N- 2-asetil–benzofuran-3-il metakrilamit monomerinin stiren ile kopolimerizasyonu: sentez, karakterizasyon ve reaktivite oranlarının belirlenmesi

Bu çalışmada N- 2-asetil–benzofuran-3-il metakrilamit NABM monomeri ile stiren St monomerinin kopolimerizasyonu çalışıldı. NABM monomerinin, St monomeri ile kopolimerizasyonu serbest radikalik polimerizasyon yöntemi ile başlatıcı olarak azobisizo bütironitril AIBN kullanılarak, 1,4-dioksan çözücüsü içerisinde 70 oC sıcaklıkta gerçekleştirildi. Elde edilen farklı monomer bileşimlerine sahip kopolimerlerin yapıları FT-IR ve NMR teknikleriyle karakterize edildi. Kopolimerlerin bileşimi, 1H-NMR spektrumlarından tayin edildi. Polimerlerin ortalama molekül ağırlıkları GPC ölçümleriyle belirlendi. Monomer reaktivite oranları, Kelen-Tüdös K-T ve Finemann-Ross F-R metotlarında kullanılan genel kopolimerizasyon eşitliğine göre hesaplandı. Farklı bileşimlere sahip kopolimerlerin termal davranışları, diferansiyel taramalı kalorimetre DSC ve termogravimetrik analiz TGA ile incelendi. Kopolimerin termogravimetrik analizleri, kopolimerlerdeki NABM’nin mol fraksiyonun artması ile termal kararlılığının azaldığını ortaya koydu. Kopolimerlerin camsı geçiş sıcaklığının, kopolimerlerdeki NABM mol fraksiyonun artması ile arttığı bulundu. Kopolimerlerin reaktivite oranları, kopolimerizasyonun alternatif eğilimli olduğunu gösterdi.

Copolymerization of N- 2-acetyl–benzofuran-3-yl methacrylamide monomer with styrene : synthesis, characterization and determination of monomer reactivity ratios

In this study, the copolymerization of N- 2-acetyl–benzofuran-3-yl methacrylamide NABM monomer with styrene St was studied. The copolymerization reaction between NABM and St monomers was carried out in 1,4-dioxane solution at 70 oC using azobisi sobutyronitrile AIBN as initiator via free radical polymerization method. The structures of the obtained copolymers having different monomer compositions were characterized by FT-IR and NMR techniques. The compositions of the copolymers were calculated by 1HNMR spectra. The average-molecular weights of the polymers were found from Gel Permeation Chromatography GPC . The monomer reactivity ratios were calculated according to the general copolymerization equation using Kelen-Tüdös K-T and Finemann-Ross F-R linearization methods. The thermal behaviours of copolymers with various compositions were investigated by differential scanning calorimetry DSC and thermogravimetric analysis TGA . Thermogravimetric analysis of the copolymers reveals that the thermal stability of the copolymers increases with an decrease in the mole fraction of NABM in the copolymers. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of NAMB in the copolymers. The reactivity ratios of copolymers indicated a tendency toward alternative copolymerization.

___

[1] A. Hameed, K. M. Khan, S. T. Zehra, R. Ahmed, Z. Shafiq, S. M. Bakht, M. Yaqub, M. Hussain, A. V. León, N. Furtmann, J. Bajorath, H. A. Shad, M. N. Tahir, J. IqbalSynthesis, Biological Evaluation and Molecular Docking of N-phenyl thiosemi carbazones as urease inhibitors, Bioorganic Chemistry, 61, 51-57, (2015) .

[2] K. C. Ryu, L. A. Song, Y. J. Lee, A. J. Hong, H. J. Yoon, A. Kim, , Synthesis and Antifungal Activity of Benzofuran-5-ols., Bioorganic & Medicinal Chemistry Letters, , 20, 6777-6780, (2010) .

[3] F. Xie, H.R. Zhu, H.X. Zhang, Q.Y. Lang, L.S. Tang, Q. Huang, L. Yu, In vitro and in vivo characterization of a benzofuran derivative, a potential anticancer agent, as a novel Aurora B kinase inhibitor, European Journal of Medicinal Chemistry, 89, 310-319, (2015).

[4] Y.S. Xie, D. Kumar, V.D.V. Bodduri, P.S. Tarani, B.X. Zhao, J.Y. Miao, K. Jang, D.S. Shin, Microwave-assisted parallel synthesis of benzofuran-2-carboxamide Cross Mark derivatives bearing anti-inflammatory, analgesic and antipyretic agents, Tetrahedron Letters, 55, 2796-2800, (2014).

[5] M. Koca, S. Servi, C. Kirilmis, M. Ahmedzade, C. Kazaz, B. Ozbek, G. Otuk, Synthesis and antimicrobial activity of some novel derivatives of benzofuran: part 1. Synthesis and antimicrobial activity of (benzofuran-2-yl)(3-phenyl-3- methylcyclobutyl) ketoxime derivatives, European Journal of Medicinal Chemistry, 40, 1351-1358, (2005).

[6] B. Cottineau, P. Toto, C. Marot, A. Pipaud, J. Chenault, Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids, Bioorganic Medicinal Chemistry. Letter., 12, 2105-2108, (2002).

[7] M. Thevenin, S. Thoret, P. Grellier, J. Dubois, Synthesis of polysubstituted benzofuran derivatives as novel inhibitors of parasitic growth, Bioorganic & Medicinal Chemistry Letters, 21, 4885-4892, (2013).

[8] M. Kamal, K. A. Shakya, T. Jawaid, Benzoforals: a New Profile Of Biological Activities, International Journal of Medical and Pharmaceutical Sciences, 1(3), (2011).

[9] A. M. Metwally, F. B. Abdel-Wahab, A. G. El-Hiti, 2- Acetylbenzofurans: Synthesis, Reactions and Application. Current Organic Chemistry, 14, 48-64, (2010) .

[10] S. M. Rida, S. A. M. El-Hawash, H. T. Y. Fahmy, A. A. Hazzaa, M. M. El- Meligy, Synthesis of novel benzofuran and

[11]related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, Anticancer and Antimicrobial Activities, Archives Pharmacal Research, 29, 826-833, (2006).

[12] R. Romagnoli, P. G. Baraldi, T. Sarkar, C. L. Caral, O. C. Lopez, M. D. Carrion, D. Preti, M. Tolomeo, J. Balzarini, E. Amel, Synthesis and biological evaluation of 2-aroyl-4-phenyl5-hydroxybenzofurans as a new class of antitubulin agents, Medicinal Chemistry, 4, 558-564, (2008).

[13] R. Basawaraj, B. Yadav, S.S. Sangapure, Synthesis of some 1H-pyrazolines bearing benzofuran as biologically active agents, Journal Heterocyclic Chemistry, 11, 31-34, (2001).

[14] R. K. Ujjinamatada, R. S. Appala, Y. S. Agasimundin, Synthesis and antimicrobial activity of new benzofuranyl-1,3- benzoxazines and 1,3-benzoxazin-2-ones, Journal Heterocyclic. Chemistry, 43, 437-441, (2006).

[15] O. Oter, K. Ertekin, C. Kirilmis, M. Koca, M. Ahmedzade, Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe(III), Sensors and Actuators B Chemistry, 122, 450-456, (2007).

[16] J. Habermann, S. V. Ley, R. Smits, Three-step synthesis of an array of substituted benzofurans using polymer-supported reagents, Journal Chemistry Society Perkin Trans, 1, 2421- 2423, (1999).

[17] D. Coşkun, New route to synthesis of unexpected 1,5-bis(1- benzofuran-2-yl) pentane-1,5-dione derivatives: Their structure determination with spectroscopic and X-ray methods, Journal of Molecular Structure, 1130, 455-462, (2017).

[18] M. Koca, A. Kurt, C. Kırılmış, Y. Aydoğdu,. Synthesis, Characterization, and Thermal Degradation of Novel Poly(2- (5-bromo benzofuran-2-yl)-2-oxoethyl methacrylate). Polymer Engineering and Science, 52, 323-330, (2012).

[19] W. T. Chang, T. H. Chen, C. C. Yu, J. Y. Kau, Comparison of Embedding Methods Used in Examining Cross-Sections of Automotive Paints with Micro Fourie Transform İnfrared Spectroscopy, Forensic Science Journal, 1, 55-60, (2002).

[20] K. Ichimura, , Y. Nishio, Photocrosslinkable polymers having p-phenylenediacrylate group in the side chain: Argon laser photoresist Journal Polymer Science. Part A Polymer Chemistry, , 25, 1579–1590, (1987).

[21] P. Samatha, T. T. Reddy, P. V. S. S. Srinivas, N. Krishnamurti, Effect of Addition of Various Acrylates on the Performance of Ethyl Cyanoacrylate Adhesive, Polymer Plastics Technology Engineering, 39, 381-392, (2000).

[22] M. Johnck, L. Muller, A. Neyer, J. W. Hofstraat, Copolymers Of Halogenated Acrylates and Methacrylates for The Application in Optical Telecommunication: Optical Properties. Thermal Analysis And Determination Of Unsaturation By Quantitative FT-Raman And FT-IR Spectroscopy, Europan Polymer Journal, 36, 1251-1264, (2000).

[23] M. G. Tu, W. M. Liang, T. C. Wu, S. Y. Chen, Evaluation of Cytotoxicity of Resin Bonding Materials Toward Human Oral Epithelial Cells Using Three Assay Systems, Journal of Dental Science, 4(4), 178-186, (2009).

[24] T. Jaeblon, Polymethyl methacrylate: Properties and Contemporary Uses in Orthopaedics, Journal of the American Academy of Orthopaedic Surgeons, 18, 297-305, (2010).

[25]E. Barım, C. Kırılmış, M. Değirmenci, Benzofuran İçeren Yeni Bir N-sübstitüe Metakrilamit Monomeri: Sentezi, Karakterizasyonu, Homo ve Kopolimerizasyonda Kullanılması, Adıyaman Üniversitesi Fen Bilimleri Dergisi, 5 (1), 43-55, (2015).

[26]Z. İlter, B. F. Şenkal, F. Yakuphanoğlu, M. Ahmedzade, Synthesis And Characterization Of A New Photosensitive Benzofuran Chalcone Methacrylamide Monomer, Journal of Polymer Engineering, 28(9): 535-551, (2008).

[27]S Nanjundan, C. S. Unnithan, C. S Selvamalar, Homopolymer of 4-benzoylphenyl Methacrylate and its Copolymers with Glycidyl Methacrylate: Synthesis, Characterization, Monomer Reactivity Ratios and Application as Adhesives, 62: 11-24, (2005).

[28]T. Kelen, F. Tüdös, Analiysis of Linear Methods for Determining Copolymerization Reactivity Ratios I.A.New Improved Linear Graphic Method. Journal Macromoleculer Science Pure Applied Chemistry, A9, 1-27, (1975).

[29]M. Fınemann, S. D. Ross, Radical Copolymerization of Styrene and Methy Methacrylate. Journal Polymer Science, 5: 259, (1950).

[30]Ö. Şen, Yan Dalda Furan Halkası Ve Oksim Esterleri Taşıyan Yeni Metakrilat Polimerlerinin Sentezi Ve Karakterizasyonu, Afyonkarahisar Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans Tezi, Afyon, (2009).

[31]S. Şarkaya, Yan Dalda Naftalin Halkası İçeren Yeni Metakrilat ve Stiren Türevlerinin Sentezi ve Kopolimerizasyonu, Afyonkarahisar Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans Tezi, Afyon, (2012).

[32]C. Soykan, Fenasilmetakrilat‟ın Glisidil metakrilat, Akrilonitril ve N-Vinil Pirrolidon ile Kopolimerlerin Sentezi ve Karakterizasyonu, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Elazığ, (2000).