Deri Doku Mühendisliği Amaçlı Üç Boyutlu Biyobaskı ve Keratinosit Kültürü

Amaç: Bu çalışmada üç boyutlu biyoyazıcı için uygun bir biyomürekkep (hidrojel - hücre karışımı)üretilerek keratinosit hücrelerinin biyobaskısı hedeflendi.Elde edilen hidrojel yapılı epidermis dokukültüründe hücre proliferasyonu, canlılık analizi, hidrojel içinde hücre dağılımı ve morfolojisibelirlendi.Yöntemler: Hücre kültürlerinde derinin üst tabakası olan epidermiste bulunan keratinosit hücrelerikullanılmıştır. Karakterizasyonu daha önce tamamlanmış olan HS2 insan keratinosit hücre hattı, farklıbiyopolimerhidrojeller (jelatin, aljinat, kitosan) ve karışımları içinde süspanse edilip biyobaskı için enuygun hidrojel bulundu. 3B keratinosit kültürleri deney başlatılmasından 1, 4 ve 7 gün sonra canlılıkanalizi için MTT testine ve hücre dağılımı ve morfolojisinin görüntülenmesi için Hematoksilen- Eozinboyamasına tabi tutuldu.Bulgular: Elde edilen MTT sonuçlarına göre hücre canlılıkları iki boyutlu (2B) kültürde elde edilenkeratinosit canlılıklarının %50'sinden yüksek çıkmıştır. MTT sonuçları keratinositlerin üretilen hidrojelyapısı içerisinde tutunarak canlılıklarını sürdürebildiklerini göstermektedir. Elde edilen hücre içeriklipolimerik hidrojelin histoloji için kesit alımına uygun olduğu ve alınan kesitlere uygulananhematoksilen/eosin boyaması sonucunda da hücrelerin hidrojel içinde homojen olarak dağıldıkları vecanlılıklarını korudukları belirlenmiştir.Sonuç: Bu çalışmada oluşturulan epidermis benzeri doku kesitleri üç boyutlu biyoyazıcı ile üretilmiş vekeratinositlerinhidrojeller içinde canlılıklarını sürdürüp doku iskelelerine tutundukları belirlenmiştir.Üretilen hidrojelbiyomürekkeplerin deri doku mühendisliğinde ve özellikle yanıklarda epidermistabakasının onarımında hızlı ve kişiye özel tedavi seçenekleri sunma potansiyeli vardır.

___

  • 1. Lanza R, Langer R, Vacanti JP. Principles of tissueengineering: Academicpress; 2011.
  • 2. O'brien FJ. Biomaterials&scaffoldsfortissueengineering. Mater Today. 2011;14:88-95.
  • 3. Akdoğan E, Omay SB. Organ Mühendisliğinde Kök Hücre Uygulamaları. Turkiye Klinikleri J SurgMedSci. 2006;2:63-8.
  • 4. Kim I-Y, Seo S-J, Moon H-S, et al. Chitosan and itsderivativesfortissueengineeringapplications. BiotechnolAdv. 2008;26:1-21.
  • 5. Murphy SV, Atala A. 3D bioprinting of tissues and organs. NatBiotechnol. 2014;32:773-85.
  • 6. Kolesky DB, Truby RL, Gladman A, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneouscell‐laden tissueconstructs. Adv Mater. 2014;26:3124-30.
  • 7. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Livingtissueformed in vitro and accepted as skinequivalenttissue of fullthickness. Science. 1981;211(4486):1052-4.
  • 8. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapidprototypingfortissueengineering. Biomaterials. 2012;33:6020-41.
  • 9. Currie LJ, Sharpe JR, Martin R. Theuse of fibrin glue in skin grafts and tissue-engineered skin replacements. PlastReconstrSurg. 2001;108:1713-26.
  • 10. Auger FA, Berthod F, Moulin V, Pouliot R, Germain L. Tissue‐engineered skin substitutes: from in vitroconstructsto in vivoapplications. BiotechnolApplBiochem. 2004;39:263-75.
  • 11. Stanton M, Samitier J, Sanchez S. Bioprinting of 3D hydrogels. LabChip. 2015;15:3111-5.
  • 12. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprintingforengineeringcomplextissues. BiotechnolAdv. 2016;34:422-34.
  • 13. Diduch DR, Jordan LC, Mierisch CM, Balian G. Marrowstromalcellsembedded in alginateforrepair of osteochondraldefects. Arthroscopy: Arthroscopy. 2000;16:571-7.
  • 14. Priya SG, Jungvid H, Kumar A. Skin tissueengineeringfortissuerepair and regeneration. TissueEngineeringPart B: Reviews. 2008;14:105-18.
  • 15. Fragonas E, Valente M, Pozzi-Mucelli M, et al. Articularcartilagerepair in rabbitsbyusingsuspensions of allogenicchondrocytes in alginate. Biomaterials. 2000;21:795-801.
  • 16. Yücesan E, Başoğlu H, Göncü B, Kandaş NÖ, Ersoy YE, Akbaş F, Ayşan E. Mikroenkapsüle edilen paratiroid hücrelerinin in-vitrooptimizasyonu. Dicle Tıp Derg. 2017;44:373-80.
  • 17. Uslu B, Arbak S. Doku Mühendisliğinde Kitozanın Kullanım Alanları. 2010.
  • 18. Suh J-KF, Matthew HW. Application of chitosan-basedpolysaccharidebiomaterials in cartilagetissueengineering: a review. Biomaterials. 2000;21:2589-98.
  • 19. Kutlu B, Aydın T, Seda R, Akman AC, Gümüşderelioglu M, Nohutcu RM. Platelet‐richplasma‐loadedchitosanscaffolds: Preparation and growthfactorreleasekinetics. Journal of BiomedicalMaterials Research Part B: J Biomed MaterRes B ApplBiomater. 2013;101:28-35.
  • 20. Pandey AR, Singh US, Momin M, Bhavsar C. Chitosan: Application in tissueengineering and skin grafting. J PolymRes. 2017;24:125.
  • 21. Liu X, Smith LA, Hu J, Ma PX. Biomimeticnanofibrousgelatin/apatite compositescaffoldsfor bone tissueengineering. Biomaterials. 2009;30:2252-8.
  • 22. Hori K, Sotozono C, Hamuro J, et al. Controlled-release of epidermalgrowthfactorfromcationizedgelatinhydrogelenhancescornealepithelialwoundhealing. J Control Release. 2007;118:169-76.
  • 23. Lien S-M, Ko L-Y, Huang T-J. Effect of pore size on ECM secretion and cellgrowth in gelatins caffoldforarticular cartilage tissueen gineering. ActaBiomater. 2009;5:670-9.
  • 24. Kang H-W, Tabata Y, Ikada Y. Fabrication of porousgelatinscaffoldsfortissueen gineering. Biomaterials. 1999;20:1339-44.
  • 25. Skardal A, Zhang J, Prestwich GD. Bioprintingvessellikeconstructsusinghyaluronanhydrogelscrosslinkedwithtetrahedralpolyethyleneglycoltetracrylates. Biomaterials. 2010;31:6173-81.
  • 26. Highley CB, Rodell CB, Burdick JA. Direct 3dprinting of shear-thinninghydrogelsinto selfhealinghydrogels. Adv. Mater. 2015;27:5075–9.
  • 27. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensionalprintingof complexbiologicalstructuresbyfreeformreversibleembedding of suspendedhydrogels. Sci. Adv. 2015; 1:e1500758.
  • 28. Colosi C,Shin SR, Manoharan V, et al. Microfluidicbioprinting of heterogeneous 3d tissueconstructsusinglowviscositybioink. Adv. Mater. 2015,28:677–84.
  • 29. Augst AD, Kong HJ, Mooney DJ. Alginatehydrogels as biomaterials. Macromol. Biosci. 2006;6:623– 33.
  • 30. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneousaorticvalveconduitswithalginate/gelatinhydrogels. J Biomed Mater Res A.2013;101:1255-64.
  • 31. Koch L, Deiwick A, Schlie S, et al. Skintissuegenerationbylasercellprinting. BiotechnoBioeng. 2012;109:1855-63.
  • 32. Miller JS. Thebillioncellconstruct: willthree-dimensionalprintingget us there? PLoSBiol. 2014; 12:e1001882.
  • 33. Murphy SV,Atala A. 3D bioprinting of tissuesand organs. Nat. Biotechnol. 2014;32:773–85.
  • 34. Blaeser A, Campos DFD, Puster U, RichteringW,Stevens MM, Fischer H. Controllingshearstress in 3dbioprinting is a keyfactortobalanceprintingresolution andstemcellintegrity. Adv. Healthc. Mater. 2016;5:326–33.
  • 35. Fedorovich NE, Schuurman W, Wijnberg HM et al. Biofabrication of osteochondraltissueequivalentsbyprintingtopologicallydefined, cell-laden hydrogelscaffolds. TissueEng C Methods.2012;18:33–44.
  • 36. Luo Y, Lode A, Gelinsky M. Direct plottingof three-dimensionalhollow fiberscaffoldsbased on concentratedalginatepastesfortissueengineering. Adv Healthcare Mater. 2013;2:777–83.
  • 37. Malda J, Visser J, Melchels FP et al. 25th Anniversary article: engineeringhydrogelsforbiofabrication. Adv Mater. 2013;25:5011–28.
  • 38. Cohen DL, Malone E, Lipson H et al. Direct freeformfabrication of seededhydrogels in arbitrarygeometries. TissueEng. 2006; 12:1325–35.
  • 39. Chaudhari AA, Vig K, Baganizi DR, Futureprospectsforscaffoldingmethods and biomaterials in skin tissueengineering: a review. Int J MolSci. 2016;17:1974.