Arı Sütünün Amiloid Beta ile Deneysel Alzheimer Modeli Oluşturulmuş Sıçanlarda Etkileri

Giriş: Arı sütünün amiloid beta1-42 enjekte edilerek Alzheimer modeli oluşturulan sıçanlarda, bilişsel işlevin azalmasına ve sinir hücresi inflamasyonuna karşı doza bağlı etkisini araştırmayı amaçladık. Yöntemler: Çalışmada, 35 adet 4 aylık 280-310 g ağırlığında Wistar-Albino erkek sıçan kullanıldı. Her grupta 7 sıçan olacak şekilde 5 grup oluşturuldu. Aβ1-42, hamilton mikroenjektörü ile hipokampüse çift taraflı 4µg/taraf enjekte edildi. Kontrol grubuna Aβ1-42 yerine, aynı miktarda serum fizyolojik enjekte edildi. Hipokampüs içine Aβ1-42 uygulamasından önceki 7 gün ve sonraki 10 günden sonra, arı sütü sıçan gruplarına sırasıyla 30 mg/kg, 100 mg/kg, 300 mg/kg mide sondası ile uygulandı. Bu uygulamalar bittikten sonra iki gün sürecek olan Pasif Sakınma testi, sonra beş gün sürecek olan Morris Su Tankı deneyleri uygulandı. Hipokampüs dokularında TNF-α ve IL-1β düzeyleri ölçüldü. İmmünohistokimyasal incelemelerde GFAP ve Iba1 boyanma şiddeti ve yaygınlığı, ayrıca astroglia ve mikroglia hücrelerinin aktive olmuş morfolojiye sahip olup olmamaları esas alındı. Bulgular: Gruplar karşılaştırıldığında, pasif sakınma testi ve morris su tankı testleri uygulanan sıçanlarda Aβ1-42 uygulamasıyla öğrenme ve hafızada gerileme oluştu. Arı sütü 30 mg/kg, 100 mg/kg ve 300 mg/kg uygulamasında öğrenme ve hafızada oluşan gerilemenin geri dönüşünde istatistiksel anlamlılık elde edilemedi. Alzheimer hastalığı grubunda gözlenen astrosit ve mikroglia aktivite artışının, 30 mg/kg grubu hariç diğer tedavi gruplarında baskılandığı görüldü. Hipokampüste TNF-α ve IL-1β düzeylerinin, Aβ1-42 uygulaması ile arttığı görüldü ve tedavi gruplarında arı sütü 30 mg/kg grubu hariç diğer iki grupta (100 ve 300 mg/kg) bu artışın baskılandığını tespit edildi. Sonuç: Alzheimer modellememizdeki bulgularımıza göre arı sütü uygulaması sonucu, oluşan astoglial ve mikroglial aktivite ve inflamasyon yapıcı sitokin artışının baskılandığı görülmüştür.

Effects of royal jelly on rats with amyloid beta in experimental Alzheimer's model

Objective: The aim of this study was to evaluate the dose-dependent effect of royal jelly against reduction of cognitive function and neuroinflammation in rats that were injected with amyloid beta1-42 peptide in Alzheimer's model. Methods: In the study, 35 4-month-old Wistar-Albino male rats weighing 280-310 g were used. 5 groups were formed with 7 rats in each group. The Aβ1-42 peptide was injected 4µg/side to be bilateral into the hippocampus with the Hamiltonian microinjector. The control group was injected with the same amount of saline, instead of Aβ1-42 7 days before and 10 days after Aβ1-42 administration into the hippocampus, royal jelly was administered to the rat groups at doses of 30 mg/kg 100 mg/kg, and 300 mg/kg, respectively, by gastrıc gavaj. After these applications were completed, the Passive Avoidance test, which would last for two days, and then the Morris Water Tank experiments, which would last for five days, were applied. TNF-α and IL-1β levels were measured in the hippocampus tissues. For the evaluation of immunohistochemical staining for immunohistochemical examinations, the severity and extent of staining for GFAP and Iba1, and whether astroglia and microglia cells have activated morphology were taken as basis. Results: When the groups were compared, there was a decline in learning and memory with the application of Aβ1-42 in rats undergoing Passive Avoidance test and Morris Water Tank tests. After administration of royal jelly doses of 30 mg/kg, 100 mg/kg and 300 mg/kg, there was no improvement in learning and memory decline. The increase in astrocyte and microglia activity observed in the Alzheimer's disease group was suppressed in treatment groups with other doses, except for the as 30 mg/kg group. TNF-α and IL-1β levels in the hippocampus were increased with the administration of Aβ1-42 peptide, and we found that this increase was suppressed in the treatment groups in the other two groups (100 and 300 mg/kg), except for the dose group of royal jelly 30 mg/kg. Conclusion: According to our findings in our Alzheimer's model, the application of royal jelly was found to suppress the resulting astoglial and microglial activity and inflammatory cytokine increase.

___

1. Javier Olivera-Pueyo CP-V. Dietary supplements for cognitive impairment IntroductIon: the MedIterranean dIet: Myth or realIty? Actas Esp Psiquiatr. 2017; 45: 37–47.

2. Rabbito A, Dulewicz M, Kulczyńska-Przybik A, Mroczko B. Biochemical Markers in Alzheimer’s Disease. Int J Mol Sci. 2020; 21: 1989.

3. Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer’s disease: As it was in the beginning. Rev Neurosci. 2017; 28: 825–43.

4. Guardia de Souza e Silva T, do Val de Paulo MEF, da Silva JRM, et al. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer’s disease. Heliyon. 2020; 6: e03281.

5. Ali AM, Kunugi H. Royal Jelly as an Intelligent AntiAging Agent—A Focus on Cognitive Aging and Alzheimer’s Disease: A Review. Antioxidants. 2020; 9: 937.

6. Fratini F, Cilia G, Mancini S, Felicioli A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol Res. 2016; 192: 130–41.

7. Pyrzanowska J, Wawer A, Joniec-maciejak I, et al. Long-term administration of Greek Royal Jelly decreases GABA concentration in the striatum and hypothalamus of naturally aged Wistar male rats. Neurosci Lett. 2018; 675: 17–22.

8. Okamoto I, Taniguchi Y, Kunikata T, et al. Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sci. 2003; 73: 2029–45.

9. Khazaei M, Ansarian A, Ghanbari E. New Findings on Biological Actions and Clinical Applications of Royal Jelly: A Review. J Diet Suppl. 2018; 15: 757–75.

10. Uçar M. Arı Sütünün Diyabet, Tümör Oluşumu ve Metabolik Sendrom Üzerine Etkisi. Online Türk Sağlık Bilim Derg. 2018; 3: 101–12.

11. Ramadan MF, Al-Ghamdi A. Bioactive compounds and health-promoting properties of royal jelly: A review. J Funct Foods. 2012; 4: 39–52.

12. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 3rd ed. New york,Academic Press. 1996. Vol. 191, Journal of Anatomy. WileyBlackwell; 1996. 315–317 p.

13. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984; 11: 47–60.

14. Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017; 133: 155–75.

15. McLarnon J, Ryu J. Relevance of Aβ1-42 Intrahippocampal Injection as An Animal Model of Inflamed Alzheimers Disease Brain. Curr Alzheimer Res. 2008; 5: 475–80.

16. Zhang J, Ke K-F, Liu Z, Qiu Y-H, Peng Y-P. Th17 Cell-Mediated Neuroinflammation Is Involved in Neurodegeneration of Aβ1-42-Induced Alzheimer’s Disease Model Rats. Vitorica J, editor. PLoS One. 2013; 8: e75786.

17. You M, Pan Y, Liu Y, et al. Royal Jelly Alleviates Cognitive Deficits and β-Amyloid Accumulation in APP/PS1 Mouse Model Via Activation of the cAMP/PKA/CREB/BDNF Pathway and Inhibition of Neuronal Apoptosis. Front Aging Neurosci. 2019; 10.

18. Pyrzanowska J, Piechal A, Blecharz-Klin K, et al. Administration of Greek Royal Jelly produces fast response in neurotransmission of aged Wistar male rats. J Pre-Clinical Clin Res. 2015; 9: 151–7.

19. Arzi A, Olapour S, Yaghooti H, Karampour NS. Effect of Royal Jelly on Formalin InducedInflammation in Rat Hind Paw. Jundishapur J Nat Pharm Prod. 2015; 10: 8–11.

20. McLarnon JG. Correlated Inflammatory Responses and Neurodegeneration in PeptideInjected Animal Models of Alzheimer’s Disease. Biomed Res Int. 2014; 2014: 1–9.

21. Preman P, Alfonso-Triguero M, Alberdi E, Verkhratsky A, Arranz AM. Astrocytes in Alzheimer’s Disease: Pathological Significance and Molecular Pathways. Cells. 2021; 10: 540.

22. Hovens I, Nyakas C, Schoemaker R. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio. Neuroimmunol Neuroinflammation. 2014; 1: 82.

23. Hol EM, Roelofs RF, Moraal E, et al. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry. 2003; 8: 786–96.

24. Chen J-H, Ke K-F, Lu J-H, Qiu Y-H, Peng Y-P. Protection of TGF-β1 against Neuroinflammation and Neurodegeneration in Aβ1–42-Induced Alzheimer’s Disease Model Rats. PLoS One. 2015; 10: e0116549.

25. Arranz AM, De Strooper B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol. 2019; 18: 406–14.

26. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia. 2010; 58.

27. You M, Miao Z, Tian J, Hu F. Trans-10-hydroxy-2- decenoic acid protects against LPS-induced neuroinflammation through FOXO1-mediated activation of autophagy. Eur J Nutr. 2020; 59: 2875– 92.

28. Almeer RS, Kassab RB, AlBasher GI, et al. Royal jelly mitigates cadmium-induced neuronal damage in mouse cortex. Mol Biol Rep. 2019; 46: 119–31.
Dicle Tıp Dergisi-Cover
  • ISSN: 1300-2945
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1963
  • Yayıncı: Cahfer GÜLOĞLU
Sayıdaki Diğer Makaleler

MPV’nin FMF Hastalarında Subklinik İnflamasyon Belirteci Olarak Önemi ve Hastalık Şiddeti ile Korelasyonu

Alper SARI, Mennune Sena ULU, Sinan KAZAN, Onur TUNCA, Mesut ÇELİKER, Mustafa KÖROĞLU

Türkiye’de İnsanların COVID-19 Aşısına Bakışı

Hatice İlke YILMAZ, Başak TURĞUT, Göksu ÇITLAK, Oğulcan MERT, Bilge PARALI, Muhammed ENGİN, Aylin AKTAŞ, Orhan ALİMOĞLU

ST Segment Yükselmesiz Akut Koroner Sendromlu Yaşlı Hastalarda Girişimsel Tedavi ile Konservatif Tedavinin Altı Aylık Dönemde Mortalite Üzerine Etkilerinin Karşılaştırılması

Ferhat IŞIK, Abdurrahman AKYÜZ, Ümit İNCİ, Habib ÇİL

A Rare Anatomical Location of Necrotizing Enterocolitis; Neonatal Appendicitis

Murat KONAK, Mehmet SARIKAYA, Tamer SEKMENLİ, Fatma Hicret SİYEK, Pınar KARABAĞLI, Hanifi SOYLU

Doku Doppler görüntüleme kullanılarak değerlendirilen pulmoner anüler hareket hızı, inferior miyokard enfarktüsü olan hastalarda proksimal sağ koroner arter tıkanıklığını öngördürebilir

Emrah ACAR, İbrahim DÖNMEZ, Sait ALAN, Osman Yasin YALÇIN, Neryan ÖZGÜL

İmmobilizasyon stresine maruz bırakılan farelerde etil pirüvatın davranışsal ve biyokimyasal parametreler üzerine etkileri

Hasan AKKOÇ, Mihrab ABUL, Emre UYAR, Süleyman DÖNMEZDİL

Youtube Contents Provides Inadequate Information About The Diagnosis And Treatment Of Hallux Valgus

Adem ŞAHİN, Anıl AGAR

Elektroporasyonun MCF-7 kanser hücrelerinde 4-aminopirimidin-2- (1H)-on ana maddesinden sentezlenen ligand ile Kobalt (II) ve Rutenyum (II) komplekslerinin sitotoksisiteleri üzerindeki etkisi

Mehmet Eşref ALKIŞ

Comparison of Therapeutic Plasma Exchange and Double Filtration Plasmapheresis: Five Year Experience of Nephrology Unit

Sibel GÖKÇAY BERK, Serkan BAKIRDÖĞEN, Necmi EREN, Yusuf HAZANAY, Betül KALENDER GÖNÜLLÜ

Glioblastomada Potansiyel Moleküler Biyobelirteçler Olarak miRNA Aracılı ceRNA’ların İn Siliko Analizi

Orçun AVŞAR