Demiryollarında Arıza Durumunda Otonom Trenler için Yedek Sistem Tasarlanması

Demiryolu işletmesinde teknik ve işletmesel sebepler hemzemin geçit havai hat gibi demiryolu elemanlarında düzensizliklere sebep olabilir. Ama bu tür arızalarda tren trafiğinin alınan önlemlerle minimum kapasite ile çalışması sağlanabilir.  Bu tür arıza durumlarında tren trafiği ve güvenliği; dispeçer ve sürücü arasında diyalog ile sağlanır. Ancak güvenliğin tamamen insan yönetiminde olması, daha fazla riski de beraberinde getirir. Gelecekte bunun üstesinden gelebilmek için otonom sistemler ile kesin çözümler üretilebilir. Bu sistemler arıza durumunda gerekli önlemleri alarak sistemin en azından minimum kapasite ile çalışmasını sağlayabilir. Bu çalışmanın amacı ATO (Automatic Train Operation) sisteminin seçilen arızalar için şimdiki ve gelecekteki “Yedek Sistem”* yöntemlerini tanımlamaktır. Bunun için olası arızaların bir listesi yapılarak bunların işletmeye olan etkileri analiz edildi. Bugünkü sistem ile Yedek Sistemin kullanılacağı gelecekteki otonom trenler için Yedek Sistemin nasıl tasarlanacağı UML (İng. Unified Modelling Language) diyagramları ile tanımlandı. ATO sistemi için gerekli değişiklikler de bu çalışma da incelendi. Bu çalışma gösterdi ki bugünkü sisteme kıyasla ATO sistemine gelecekte daha teknolojik yeni parçaların eklenmesi gerekmektedir. Ayrıca sürücünün üstlendiği görevlerin bazılarını otonom sisteme aktarmak mümkün olmayabilir. Buna rağmen alınacak önlemler bu çalışmada irdelenmiştir, ancak bu önlemler önce simule edildikten sonra gerçek anlamda uygulanabilir.

Development of Automated Fallback levels of Disrupted Railway Operations

Abstract: Irregularities may be caused by many technical or operational reasons. In railway operation, there may be a failure of the interlocking system, a power failure in the overhead line, a technical fault in a level crossing, or other unexpected unpleasant effects may happen. However, railway operation must be continued in all cases. As some of the technical facilities do not work, train rides are carried out with written orders. This means “deviation from the regular mode”. The safety of railway operations depends on deviation from the regular mode mainly on the people involved. When facing with the challenge the solutions must be developed in order to carry on autonomously in case of deviations from regular mode. The autonomous system must therefore also be able to take the correct measures even in the case of deviations from the control mode. In this work, the associated procedures in fall-back level under the ATO system are described for selected faults from the railway operation. By means of data collection, the possible faults in railway operation were first collected. Afterwards, the impact on the farm was analysed and today's fall-back level were described. In the further step, today's procedures were transferred to the future ATO system and described using a UML diagram. The necessary modifications for the ATO system were developed.   The comparison of today's approaches and those under the ATO system shows that for the system, considerableamounts of new components must be invested in the future. In addition, it has been shown that some tasks cannot be transferred directly to the ATO system by the train driver. These measures have not yet been carried out, but the logic of the measures has been mentioned in this work. They can be simulated first and then applied in reality.

___

[1] http://www.berliner-verkehrsseiten.de/u-bahn/Stellwerke/Zugsicherungstechnik/STAR/star.html , Bakılma Tarihi 26.05.17

[2] Gralla, Christoph: Sind wir bereit für den fahrerlosen Verkehr im Nah‐ und Fernverkehr? Signal + Draht, 4/2016, s. 6-16

[3] Zastrow, Kai Frederik, Dissertation - Analyse und Simulation von Entstörungsstrategien bei der Automatisierung von U-Bahnsystemen, TU Berlin, 2000, s. 2

[4] Villioth-Ebert, Heike, Richtlinie 408.21 – 27, Fahrdienstvorschrift; Deutsche Bahn AG, 2016

[5] FTA Analyse der türkischen Staatsbahn, Abteilung des Risiko- und Sicherheitsmanagement, Ankara, 2017

[6] Günther, Oliver, Ril 420.9001, Kodierung der Zusatzverspätungen, Deutsche Bahn AG, 2014

[7] Eisenbahnunfalluntersuchung, Bundesministerium für Verkehr und digitale Infrastruktur , Bonn, 2016

[8] Railway Safety Performance in the European Union, ERA (European Railway Agency), 2016

[9] Börcsök, Josef, Funktionale Sicherheit, VDE Verlag, Berlin, 2015, S.479-485

[10] Hermann Winner, Handbuch Fahrerassistenzsysteme, Vieweg + Teubner, Wiesbaden, 2012

[11] Jazdi, N., Zuverlässigkeit und Sicherheit von Automatisierungssystemen, Uni-Stuttgart, 2015

[12] BS EN 50126-1, Railway applications The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS), British Standards, Mai 2010

[13] Braband, Jens; Brehmke, Bernd-E., et al. Die CENELEC-Normen zur Funktionalen Sicherheit, Hamburg, 2006

[14] Üyümez, Bilal, Bahnsystem und Bahntechnik, TU Darmstadt, 2017

[15] Pascoe, Robert D., What is Communication-based Train Control?, IEEE Vehicular Technology Magazine, December, 2009, s.17-21

[16] Befehle 1-14, Deutsche Bahn AG, http://www1.deutschebahn.com/file/fahrweg-de/10223642/gzU4Va4w7LuJDbVQDAQ6BKl9Hs4/10228382/data/rw_302.3000V01.pdf Bakılma Tarihi 16.06.2017

[17] http://www.stellwerke.de/signal/deutsch/sp.html, , Bakılma Tarihi 22.06.17

[18] Hörsken, Dieter; Griese, Reinhard, Ril 494.0251, Technisch Einrichtungen am Zug bedienen Selbstabfertigung durch den Tf. (SAT), DB Regio, 2001

[19] Haas, Jürgen, Rückfallebenen für Streckenausrüstung ETCS Level 2 ohne Signale, SIGNAL + DRAHT 10/2015, s. 6-10

[20] http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/, , Bakılma Tarihi 14.07.17

[21] http://www.orghandbuch.de/OHB/DE/Organisationshandbuch/6_MethodenTechniken/62_Dokumentationstechniken/623_Entscheidungstabellen/entscheidungstabellen-node.html , Bakılma Tarihi 26.07.2016

[22] Lemke, Oliver, Modellbasierte Anforderungsspezifikation sicherheitskritischer Systeme im Bahnbereich – Beschreibungsmittel und ihre Anwendung, Technischen Universität Carolo-Wilhelmina, 2010

[23] http://www.schmidt-bernd.eu/philosophie/systemtheorie/kuenstliche_intelligenz/2_PECSAgent/PECSAgent.pdf , Bakılma Tarihi 10.08.17

[24] http://db-livemaps.hafas.de/bin/query.exe/dn?tpl=fullscreenmap&L=vs_baustellen&useZoomDependentPrio=false , Bakılma Tarihi 26.05.17

[25] Aparna, S.; Sujatha Priyadharshini, A., Emergency Management of Urban Rail Transportation Using CBTC System, PRIST University, Thanjavur, India, März 2015

[26] Lindner, Tobias, et al., Betrachtungen zur Zuverlässigkeit des Triebfahrzeugführers, EI-Eisenbahningenieur, Januar 2014, s. 10-16

[27] ERTMS/ETCS SUBSET-026-4, V. 3.6.0- System Requirements Specification Chapter 4 Modes and Transitions, ERA (European Railway Agency), 05/2016

[28] Lindner, Tobias, Entwicklung einer Methode zur Bewertung unterschiedlicher Rückfallebenen, SIGNAL + DRAHT, 5/2012, s. 37-39

[29] Kämmerer, Florian Rudolf, Entwicklung eines Kennzahlensystems für Effektivität des Bahnbetriebs bei Abweichungen vom Regelbetrieb, Institut für Verkehr der TU Darmstadt FB Bahnsysteme, 2017