REJENERATİF ENDODONTİDE BÜYÜME FAKTÖRLERİ

Rejeneratif tedaviler progenitör/kök hücreler, doku iskeleleri ve büyüme faktörleri olmak üzere üç bileşene dayalıdır. Büyüme faktörleri sinyal molekülleri olarak davranan polipeptidlerdir ve farklılaşma, çoğalma ve migrasyonu içeren hücresel olayları modüle ederler. Hücresel aktivitelerin düzenlenmesi sırasında, büyüme faktörleri kendilerine özgü hücre yüzey reseptörlerine bağlanırlar ve hücre içi sinyal yolakları ve transkripsiyon faktörlerini kullanırlar. Transforme edici büyüme faktörü, vasküler endotelyal büyüme faktörü, platelet kaynaklı büyüme faktörü, fibroblast büyüme faktörü ve insülin benzeri büyüme faktörü pulpa-dentin kompleksinin tamir ve rejenerasyonunda etkilerinin gösterildiği rejeneratif endodontik çalışmalara konu olan büyüme faktörleridir. Bu derlemenin amacı, hücre içi fonksiyonlarda büyüme faktörlerinin önemini tartışmaktır.Anahtar Kelimeler: Büyüme faktörleri, rejeneratif endodonti, pulpa-dentin kompleksiGROWTH FACTORS IN REGENERATIVE ENDODONTICS ABSTRACTRegenerative therapies are based on three components which are progenitor/stem cells, scaffolds and growth factors. Growth factors are polypeptides that act as signal molecules and modulate celullar actions including differentiation, proliferation and migration. During the regulation of cellular activities, they bind specific cell-surface receptors and use intracellular signalling pathways and transcription factors. Transforming Growth Factor, Vascular Endothelial Growth Factor, Platelet Derived Growth Factor, Fibroblast Growth Factor and Insulin-like Growth Factor are growth factors mostly subjected to regenerative endodontic studies in which their effects are displayed on pulp-dentine complex repair and regeneration. The aim of this review is to discuss the importance of growth factors in intracellular functions.Keywords: Growth factors, regenerative endodontics, pulp-dentine complex

___

  • 1. Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther 2005;5:879-92.
  • 2. Chandki R, Kala M, Banthia P, Banthia R. From stem to roots: Tissue Engineering in Endodontics. J Clin Exp Dent Dentistry 2012;4:e66-71.
  • 3. Kim SG, Zhou J, Solomon C, Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am 2012;56:563-575.
  • 4. Jo YY, Lee HJ, Kook SY, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 2007;13:767-73.
  • 5. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med: 2004;15:13-27.
  • 6. Nanci A. Ten Cate’s Oral Histology. 7 ed .St Louis; Missouri: p. 191-238; 2008.
  • 7. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961;25:585-621.
  • 8. Blackburn EH. Structure and function of telomeres. Nature 1991;350:569-73.
  • 9. Greider CW. Telomere length regulation. Annu Rev Biochem 1996;65:337-65.
  • 10. Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 2010;36:781-9.
  • 11. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97:13625-30. 12. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81:531-5. 13. Lin LM, Rosenberg PA. Repair and regeneration in endodontics. Int Endod J 2011;44:889-906.
  • 14. Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet (London, England) 2004;364:149-55.
  • 15. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science (New York, NY) 1997;276:71-4.
  • 16. Malhotra N, Mala K. Regenerative endodontics as a tissue engineering approach: past, current and ure. Aust Endod J: 2012;38:137-48.
  • 17. Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 2005;31:711-8.
  • 18. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 2003;21:1025-32.
  • 19. Rao MS. Stem sense: a proposal for the classification of stem cells. Stem Cells Dev 2004;13:452-5.
  • 20. Griffith LG, Naughton G. Tissue engineering current challenges and expanding opportunities. Science (New York, NY) 2002;295:1009-1014.
  • 21. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 2004;83:523-528.
  • 22. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod 2007;33:377-90.
  • 23. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells. Setting standards for human embryonic stem cells. Science (New York, NY) 2003;300:913-6.
  • 24. Fortier LA. Stem cells: classifications, controversies, and clinical applications. Vet Surg : 2005;34:415-23.
  • 25. Gardner RL. Stem cells: potency, plasticity and public perception. J Anat 2002;200:277-82.
  • 26. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004;116:639-48.
  • 27. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry--part I: stem cell sources. J Prosthodont Res 2012;56:151-65.
  • 28. Liao J, Al Shahrani M, Al-Habib M, Tanaka T, Huang GT. Cells isolated from inflamed periapical tissue express mesenchymal stem cell markers and are highly osteogenic. J Endod 2011;37:1217-1224.
  • 29. Malhotra N, Kundabala M, Acharya S. Current strategies and applications of tissue engineering in dentistry a review part 1. Dent Update 2009;36: 577-9, 581-2
  • 30. Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. A Ann Biomed Eng 2004;32:148-159.
  • 31. Murphy WL, Mooney DJ. Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. J Periodontal Res 1999;34:413-9.
  • 32. Nosrat A, Ryul Kim J, Verma P, P SC. Tissue engineering considerations in dental pulp regeneration. Iran Endod J 2014;9:30-9.
  • 33. Wigler R, Kaufman AY, Lin S, Steinbock N, Hazan-Molina H, Torneck CD. Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development. J Endod 2013;39:319-26.
  • 34. Lovelace TW, Henry MA, Hargreaves KM, Diogenes A. Evaluation of the Delivery of Mesenchymal Stem Cells into the Root Canal Space of Necrotic Immature Teeth after Clinical Regenerative Endodontic Procedure. J Endod 2011;37:133-8.
  • 35. Galler KM, Buchalla W, Hiller KA, et al. Influence of root canal disinfectants on growth factor release from dentin. J Endod 2015;41:363-8.
  • 36. Lind M. Growth factors: possible new clinical tools. A review. Acta Orthop Scand 1996;67:407-17.
  • 37. Lazar-Molnar E, Hegyesi H, Toth S, Falus A. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 2000;12:547-54.
  • 38. Kim SG, Solomon C, Zheng Y, et al. Effects of Growth Factors on Dental Stem/ProgenitorCells. Dent Clin North Am 2012;56:563-75.
  • 39. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004;83:590-5.
  • 40. Unda FJ, Martin A, Hernandez C, Perez-Nanclares G, Hilario E, Arechaga J. FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res 2001;15:34-7.
  • 41. Sloan AJ, Smith AJ. Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Arch Oral Biol 1999;44:149-156. 42. Goldberg M, Lacerda-Pinheiro S, Jegat N, et al. The impact of bioactive molecules to stimulate tooth repair and regeneration as part of restorative dentistry. Dent Clin North Am 2006;50:277-98. 43. Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol 2000;45:1013-6.
  • 44. Smith A, Scheven B, Takahashi Y, Ferracane J, Shelton R, Cooper P. Dentine as a bioactive extracellular matrix. Arch Oral Biol 2012;57:109-21.
  • 45. Tran-Hung L, Laurent P, Camps J, About I. Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol 2008;53:9-13.
  • 46. Laurent P, Camps J, About I. Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012;45:439-48.
  • 47. Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med 2001;12:425-437.
  • 48. About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiadis TA. Human dentin production in vitro. Exp Cell Res 2000;258:33-41.
  • 49. Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I. Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod 2013;39:228-35.
  • 50. Tran-Hung L, Mathieu S, About I. Role of human pulp fibroblasts in angiogenesis. J Dent Res 2006;85:819-23.
  • 51. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995;11:73-91.
  • 52. Behzadian MA BA, El-Remessy B, et al Cellular and molecular mechanisms of retinal angiogenesis. Penn JS, ed. Retinal and Choroidal Angiogenesis. 1 ed. New York: Springer 2008; p.1-39.
  • 53. Flamme I, Frolich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 1997;173:206-210.
  • 54. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011;473:298-307.
  • 55. Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 2004;231:474-88.
  • 56. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851-8.
  • 57. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science (New York, NY) 1989;246:1306-9.
  • 58. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581-611.
  • 59. Yang LC, Tsai CH, Huang FM, et al. Induction of vascular endothelial growth factor expression in human pulp fibroblasts stimulated with black‐pigmented Bacteroides. Int Endod J 2004;37:588-92.
  • 60. Botero TM, Mantellini MG, Song W, Hanks CT, Nor JE. Effect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophages. Eur J Oral Sci 2003;111:228-234.
  • 61. Telles PD, Hanks CT, Machado MA, Nor JE. Lipoteichoic acid up-regulates VEGF expression in macrophages and pulp cells. J Dent Res 2003;82:466-470.
  • 62. Matsushita K, Motani R, Sakuta T, et al. Lipopolysaccharide enhances the production of vascular endothelial growth factor by human pulp cells in culture. Infect Immun 1999;67:1633-1639.
  • 63. Costa CA, Mesas AN, Hebling J. Pulp response to direct capping with an adhesive system. Am J Dent 2000;13:81-7.
  • 64. Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A. Vascular endothelial growth factor (VEGF) expression in healthy and inflamed human dental pulps. J Endod 2002;28:20-3.
  • 65. Leonardi R, Caltabiano M, Pagano M, Pezzuto V, Loreto C, Palestro G. Detection of vascular endothelial growth factor/ vascular permeability factor in periapical lesions. J Endod 2003;29:180-3.
  • 66. Marchionni C, Bonsi L, Alviano F, et al. Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 2009;22:699-706.
  • 67. D' Alimonte I, Nargi E, Mastrangelo F, et al. Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Regul Homeost Agents 2011;25:57-69.
  • 68. Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin GR. Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 1982;92:584-8.
  • 69. Rutherford RB, TrailSmith MD, Ryan ME, Charette MF. Synergistic effects of dexamethasone on platelet-derived growth factor mitogenesis in vitro. Arch Oral Biol 1992;37:139-45.
  • 70. Deuel TF, Senior RM, Huang JS, Griffin GL. Chemotaxis of monocytes and neutrophils to platelet-derived growth factor. J Clin Invest 1982;69:1046-9.
  • 71. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent Results Cancer Res 2010;180:103-14.
  • 72. Bouletreau PJ, Warren SM, Spector JA, Steinbrech DS, Mehrara BJ, Longaker MT. Factors in the fracture microenvironment induce primary osteoblast angiogenic cytokine production. Plast Reconstr Surg 2002;110:139-48.
  • 73. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79:1283-316.
  • 74. Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 2006; 81: 1241-57.
  • 75. Hannink M, Donoghue DJ. Structure and function of platelet-derived growth factor (PDGF) and related proteins. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1989;989:1-10.
  • 76. Denholm IA, Moule AJ, Bartold PM. The behaviour and proliferation of human dental pulp cell strains in vitro, and their response to the application of platelet-derived growth factor-BB and insulin-like growth factor-1. Int Endod J 1998;31:251-8.
  • 77. Nakashima M. The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol 1992;37:231-6.
  • 78. Yokose S, Kadokura H, Tajima N, et al. Platelet-derived growth factor exerts disparate effects on odontoblast differentiation depending on the dimers in rat dental pulp cells. Cell Tissue Res 2004;315:375-84.
  • 79. Kim JY, Xin X, Moioli EK, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 2010;16:3023-31.
  • 80. Ogino Y, Ayukawa Y, Kukita T, Koyano K. The contribution of platelet-derived growth factor, transforming growth factor-b1, and insulin-like growth factor-I in platelet-rich plasma to the proliferation of osteoblast-like cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:724-9.
  • 81. Keck PJ HS, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science (New York, NY) 1989; 246: 1309-12
  • 82. Pardali E, Dijke P. TGFβ Signaling and Cardiovascular Diseases. Int J Biol Sci 2012;8:195-213.
  • 83. Wahl SM. Transforming growth factor beta (TGF-beta) in inflammation: a cause and a cure. J Clin Immunol 1992;12:61-74.
  • 84. Cassidy N, Fahey M, Prime SS, Smith AJ. Comparative analysis of transforming growth factor-beta isoforms 1-3 in human and rabbit dentine matrices. Arch Oral Biol 1997;42:219-23.
  • 85. Javelaud D, Mauviel A. Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol 2004;36:1161-5.
  • 86. Lan HY, Chung AC. Transforming growth factor-beta and Smads. Contrib Nephrol 2011;170:75-82.
  • 87. Gold LI, Sung JJ, Siebert JW, Longaker MT. Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair. Am J Pathol 1997;150:209-22.
  • 88. Nakashima M, Nagasawa H, Yamada Y, Reddi AH. Regulatory Role of Transforming Growth Factor-β, Bone Morphogenetic Protein-2, and Protein-4 on Gene Expression of Extracellular Matrix Proteins and Differentiation of Dental Pulp Cells. Dev Biol 1994;162:18-28.
  • 89. He H, Yu J, Liu Y, et al. Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 2008;32:827-34.
  • 90. Chang HH, Chang MC, Wu IH, et al. Role of ALK5/Smad2/3 and MEK1/ERK Signaling in Transforming Growth Factor Beta 1-modulated Growth, Collagen Turnover, and Differentiation of Stem Cells from Apical Papilla of Human Tooth. J Endod 2015;41:1272-80.
  • 91. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004; 22:233-41.
  • 92. Urist MR. Bone: formation by autoinduction. Science (New York, NY) 1965;150:893-9.
  • 93. Wang EA, Rosen V, D'Alessandro JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 1990;87:2220-4.
  • 94. Saito T, Ogawa M, Hata Y, Bessho K. Acceleration Effect of Human Recombinant Bone Morphogenetic Protein-2 on Differentiation of Human Pulp Cells Into Odontoblasts. J Endod 2004;30:205-8.
  • 95. Chen S, Gluhak-Heinrich J, Martinez M, et al. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem 2008;283:19359-70.
  • 96. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004;83:590-595.
  • 97. Rutherford RB, Gu K. Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur J Oral Sci 2000;108:202-6.
  • 98. Six N, Lasfargues JJ, Goldberg M. Differential repair responses in the coronal and radicular areas of the exposed rat molar pulp induced by recombinant human bone morphogenetic protein 7 (osteogenic protein 1). Arch Oral Biol 2002;47:177-87.
  • 99. Jepsen S, Albers HK, Fleiner B, Tucker M, Rueger D. Recombinant human osteogenic protein-1 induces dentin formation: an experimental study in miniature swine. J Endod 1997;23:378-82.
  • 100. TJ. S. FGF-1: a human growth factor in the induction of neoangiogenesis. Expert Opin Investig Drugs 1998;7:2011-5.
  • 101. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001;2:Reviews3005.
  • 102. Blaber M, DiSalvo J, Thomas KA. X-ray crystal structure of human acidic fibroblast growth factor. Biochemistry 1996;35:2086-94.
  • 103. Khurana R, Simons M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc Med 2003;13:116-22. 104. Davidson JM, Klagsbrun M, Hill KE, et al. Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor. J Cell Biol 1985;100:1219-27.
  • 105. Abraham JA, Whang JL, Tumolo A, et al. Human basic fibroblast growth factor: nucleotide sequence and genomic organization. Embo j 1986;5:2523-8.
  • 106. Cuny R, Jeanny JC, Courtois Y. Lens regeneration from cultured newt irises stimulated by retina-derived growth factors (EDGFs). Differentiation; 1986;32:221-9.
  • 107. Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 1988;81:1572-7.
  • 108. Bronckaers A, Hilkens P, Fanton Y, et al. Angiogenic properties of human dental pulp stem cells. PloS one 2013;8:e71104.
  • 109. Kim JJ, Kim SJ, Kim YS, Kim SY, Park SH, Kim EC. The role of SIRT1 on angiogenic and odontogenic potential in human dental pulp cells. J Endod 2012;38:899-906.
  • 110. Takeuchi N, Hayashi Y, Murakami M, et al. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor. Oral Dis 2015;21:113-22.
  • 111. Li Z, Sae-Lim V. Comparison of acidic fibroblast growth factor on collagen carrier with calcium hydroxide as pulp capping agents in monkeys. Dent Traumatol 2007;23:278-86.
  • 112. Qian J, Jiayuan W, Wenkai J, et al. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J 2015;48:690-700.
  • 113. Liu CH, Huang TH, Hung CJ, Lai WY, Kao CT, Shie MY. The synergistic effects of fibroblast growth factor‐2 and mineral trioxide aggregate on an osteogenic accelerator in vitro. Int Endod J 2014;47:843-53.
  • 114. Humbel RE. Insulin-like growth factors I and II. Eur J Biochem 1990;190:445-62.
  • 115. Joseph BK, Savage NW, Young WG, Gupta GS, Breier BH, Waters MJ. Expression and regulation of insulin-like growth factor-I in the rat incisor. Growth Factors 1993;8:267-75.
  • 116. Onishi T, Kinoshita S, Shintani S, Sobue S, Ooshima T. Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol 1999;44:361-71.
  • 117.Caviedes-Bucheli J, Canales-Sanchez P, Castrillon-Sarria N, et al. Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development. Int Endod J 2009;42:686-93.
  • 118.Caviedes-Bucheli J, Angel-Londono P, Diaz-Perez A, et al. Variation in the expression of insulin-like growth factor-1 in human pulp tissue according to the root-development stage. J Endod 2007; 33:1293-1295.
  • 119.Caviedes-Bucheli J, Munoz HR, Rodriguez CE, Lorenzana TC, Moreno GC, Lombana N. Expression of insulin-like growth factor-1 receptor in human pulp tissue. J Endod 2004;30:767-9.
  • 120.Nagata JY, Soares AJ, Souza-Filho FJ, et al. Microbial evaluation of traumatized teeth treated with triple antibiotic paste or calcium hydroxide with 2% chlorhexidine gel in pulp revascularization. J Endod 2014;40:778-783
  • 121.Cantekin K, Herdem G. Dental travmaya uğramiş genç daimi keser dişlere rejeneratif endodontik tedavi uygulamasi: iki olgu raporu. Atatürk Üniv. Diş Hek. Fak. Derg 2014;2: 274-7.
  • 122.Diogenes A, Henry MA, Teixeira FB, Hargreaves KM. An update on clinical regenerative endodontics. Endod Topics 2013;28:2-23.
Current Research in Dental Sciences-Cover
  • Başlangıç: 1986
  • Yayıncı: Atatürk Üniversitesi