ISIL DÖNGÜNÜN HASTA BAŞINDA KULLANILAN SERT ASTAR MATERYALLERİ İLE ASTARLANAN AKRİLİK REZİNLERİN TRANSVERS DAYANIMINA ETKİSİ

Amaç: Bu çalışmanın amacı, ısısal farklılıkların hasta başında kullanılan sert astar materyalleri ile astarlanan akrilik rezinlerin transvers dayanımına etkisini değerlendirmektir. Gereç ve Yöntem: İki farklı sert astar materyali ve geleneksel protez kaide rezini kullanılarak beş adet deney grubu oluşturuldu. Birinci grup, muflalama tekniğiyle üretilen geleneksel akrilik kaide rezininden (Akrilik rezin), ikinci grup görünür ışıkla polimerize olan rezinden (Triad), üçüncü grup otopolimerizan rezinden (Tokuyama), dördüncü grup görünür ışıkla polimerize olan rezin ile astarlanan akrilik rezinden (Triad Reline) ve beşinci grup ise otopolimerizan rezin ile astarlanan akrilik rezinden (Tokuyama Reline) oluşmaktadır. Her bir deney grubunda 65×10×3 mm3 boyutunda hazırlanan örnekler, rastgele kontrol ve ısıl döngü grubu olarak  ikiye ayrıldı (n=10). Isıl döngü işlemi; sıcaklığı 50C-550C arasında değişen su banyolarında 5000 kez yapıldı. Sonrasında örneklerin transvers dayanım değerleri tespit edildi. Örneklerin transvers dayanımına ait veriler, iki yönlü varyans analizi ile değerlendirildi ve gruplar arasındaki farklılıkların tespit edilmesi için  Tukey’s HSD post hoc testi kullanıldı (α=0.05). Bulgular: Isıl döngü işleminin bütün gruplarda transvers dayanım değerlerini azalttığı belirlendi. Transvers dayanım astarlama yapılmayan akrilik protez kaidesinde en yüksek, astarlama yapılan kaidelerde ise daha düşük bulundu. Otopolimerizan hasta başı sert astarlama materyali (Tokuyama) ile astarlanan kaide, ışıkla polimerize materyale (Triad) göre daha yüksek transvers dayanım gösterdi. Sonuç: Protez kaide ve astar materyallerinin dayanımı ısıl değişkenlerden etkilenmekte olup, otopolimerizan astar materyali ile astarlanan akrilik rezin, görünür ışıkla polimerize olan astar materyalleriyle astarlanan rezine oranla daha yüksek dayanım göstermektedir. Anahtar Kelimeler: Akrilik rezinleri, protez astarlama, polimerizasyon EFFECT OF THERMOCYCLING ON THE TRANSVERSE STRENGTH OF ACRYLIC RESINS RELINED WITH CHAIRSIDE HARD RELINING MATERIALS ABSTRACT Aim: The purpose of the present study is to evaluate effect of thermal cycling on the transverse strength of acrylic resins relined with chair side hard relining materials. Materials and Methods: Five experimental groups were generated using two different hard relining and conventional denture base resin materials. Groups were consisted of conventional acrylic denture base resin (Acrylic resin), visible light polymerized resin (Triad), otopolymerized resin (Tokuyama), acrylic resin relined with visible light polymerized resin (Triad Reline), and acrylic resin relined with  otopolymerized resin (Tokuyama Reline), respectively. For each experimental group, specimens with dimensions of  65×10×3 mm3  were divided into two groups as control and thermocycling (n=10). Thermocycling was performed for 5000 times in baths held 50C-550C water. Then, transverse strength of the specimens were measured. Transverse strength data of the specimens were analyzed using two-way analysis of variance and pairwise comparisons among the groups were evaluated with Tukey’s HSD test (α=0.05). Results: Thermocycling decreased the transvers strength values of the materials in all groups. The transvers strength values were higher in non relined acrylic resin group, and lower in relined groups. Otopolymerized hard relining material (Tokuyama Reline) had higher transvers strength values than visible light polimerized resin (Triad Reline). Conclusion: Denture base and reline resins were affected by thermal differences. Acrylic resins relined with otopolymerized relining material showed higher strength than acrylic resin relined with visible light polimerized resin. Key Words: Acrylic resins, denture relining, polymerization

___

  • 1. Jagger DC, Jagger RG, Allen SM, Harrison A. An investigation into the transverse and impact strength of 'high strength' denture base acrylic resins. J Oral Rehabil 2002;29:263-7.
  • 2. Meng TR Jr, Latta MA. Physical properties of four acrylic denture base resins. J Contemp Dent Pract 2005;6:93-100.
  • 3. Haywood J, Basker R, Watson C, Wood D. A comparison of three hard chairside denture reline materials. Part I. Clinical evaluation. Eur J Prosthodont Rest Dent 2003;11:157-63.
  • 4. da Cruz Perez LE, Machado AL, Canevarolo SV, Vergani CE, Giampaolo ET, Pavarina AC. Effect of reline material and denture base surface treatment on the impact strength of a denture base acrylic resin. Gerodontology 2010;27:62-9.
  • 5. Matsumura H, Tanoue N, Kawasaki K, Atsuta M. Clinical evaluation of a chemically cured hard denture relining material. J Oral Rehabil 2001;28:640-4.
  • 6. Polyzois GL, Lagouvardos PE, Frangou MJ. Flexural and bond strengths of relined denture polymers assessed by four‐point bending tests and Weibull analysis. Gerodontology 2012;29:e543-e52.
  • 7. Bal Bt, Yavuzyilmaz H. Yumuşak Astar Maddeleri. Atatürk Üniv Diş Hek Fak Derg 2006;Suppl 1:53-60.
  • 8. Murata H, Seo RS, Hamada T, Polyzois GL, Frangou MJ. Dynamic mechanical properties of hard, direct denture reline resins. J Prosthet Dent 2007;98:319-26.
  • 9. Arima T, Murata H, Hamada T. Properties of highly cross-linked autopolymerizing reline acrylic resins. J Prosthet Dent 1995;73:55-9.
  • 10. Takahashi Y, Kawaguchi M, Chai J. Flexural strength at the proportional limit of a denture base material relined with four different denture reline materials. Int J Prosthodont 1997;10:508-16.
  • 11. Archadian N, Kawano F, Ohguri T, Ichikawa T, Matsumoto N. Flexural strength of rebased denture polymers. J Oral Rehabil 2000;27:690-6.
  • 12. Seo RS, Murata H, Hong G, Vergani CE, Hamada T. Influence of thermal and mechanical stresses on the strength of intact and relined denture bases. J Prosthet Dent 2006;96:59-67.
  • 13. Reis JMdSN, Vergani CE, Pavarina AC, Giampaolo ET, Machado AL. Effect of relining, water storage and cyclic loading on the flexural strength of a denture base acrylic resin. J Dent 2006;34:420-6.
  • 14. Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials. 11th ed. St Louis; MO Saunders: 2003.p.737.
  • 15. Gale M, Darvell B. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99.
  • 16. Silva CdS, Machado AL, Chaves CdAL, Pavarina AC, Vergani CE. Effect of thermal cycling on denture base and autopolymerizing reline resins. J Appl Oral Sci 2013;21:219-24.
  • 17.Craig R, Power J. Restorative dental materials, 11th edn. St Louis; MO Mosby: 2002.p.87-8.
  • 18. Takahashi JMFK, Machado FM, Nuñez JMC, Consani RLX, Mesquita MF. Relining of prosthesis with auto‐polymerizing hard denture reline resins: effect of post‐polymerization treatment on flexural strength. Gerodontology 2009;26:232-6.
  • 19. Chai J, Takahashi Y, Kawaguchi M. The flexural strengths of denture base acrylic resins after relining with a visible-light-activated material. Int J Prosthodont 1998;11:121-4.
  • 20. Takahashi Y, Chai J, Kawaguchi M. Effect of water sorption on the resistance to plastic deformation of a denture base material relined with four different denture reline materials. Int J Prosthodont 1998;11:49-54.
  • 21. Takahashi Y, Chai J, Kawaguchi M. Strength of relined denture base polymers subjected to long-term water immersion. Int J Prosthodont 2000;13:205-8.
  • 22. Hayakawa I, Nagao M, Matsumoto T, Masuhara E. Properties of a new light-polymerized relining material. Int J Prosthodont 1990;3:278-84.
  • 23. Seo RS, Vergani CE, Giampaolo ET, Pavarina AC, Reis JMdSN, Machado AL. Effect of disinfection by microwave irradiation on the strength of intact and relined denture bases and the water sorption and solubility of denture base and reline materials. J Appl Polym Sci 2008;107:300-8.
  • 24. Durkan R, Özel MB, Bağıs B, Usanmaz A. In vitro comparison of autoclave polymerization on the transverse strength of denture base resins. Dent Mater J 2008;27:640-2.
  • 25. Gürbüz O, Ünalan F, Dikbaş I. Comparison of the transverse strength of six acrylic denture resins. OHDMBSC 2010;9:21-4.
  • 26. Al Rifaiy MQ. Shear bond strength between light polymerized hard reline resin and denture base resin subjected to long term water immersion. Saudi Dent J 2012;24:23-7.
  • 27. Al-Mulla M, Huggett R, Brooks S, Murphy W. Some physical and mechanical properties of a visible light-activated material. Dent Mater 1988;4:197-200.
  • 28. Machado C, Sanchez E, Azer SS, Uribe JM. Comparative study of the transverse strength of three denture base materials. J Dent 2007;35:930-3.
  • 29. Tan H-K, Brudvik JS, Nicholls JI, Smith DE. Adaptation of a visible light-cured denture base material. J Prosthet Dent 1989;61:326-31.
  • 30. Diaz-Arnold AM, Vargas MA, Shaull KL, Laffoon JE, Qian F. Flexural and fatigue strengths of denture base resin. J Prosthet Dent 2008;100:47-51.
  • 31. Jagger D, Harrison A, Jagger R, Milward P. The effect of the addition of poly (methyl methacrylate) fibres on some properties of high strength heat‐cured acrylic resin denture base material. J Oral Rehabil 2003;30:231-5.
  • 32. Shim JS, Watts D. Residual monomer concentrations in denture-base acrylic resin after an additional, soft-liner, heat-cure cycle. Dent Mater 1999;15:296-300.
  • 33. Lamb D, Ellis B, Priestley D. Loss into water of residual monomer from autopolymerizing dental acrylic resin. Biomater 1982;3:155-9. 34. Hargreaves A. The effects of cyclic stress on dental polymethylmethacrylate. J Oral Rehabil 1983;10:137-51.
  • 35. Durkan RK, Özdemir T, Pamir AD, Usanmaz A. Water absorption of two different denture base resins reinforced with dental fiber systems. J Appl Polym Sci 2010;117:1750-3.
  • 36. Urban VM, Machado AL, Vergani CE, Giampaolo ET, Pavarina AC, de Almeida FG, Cass QB. Effect of water-bath post-polymerization on the mechanical properties,degree of conversion, and leaching of residual compounds of hard chairside relineresins. Dent Mater. 2009;25:662-71.
  • 37. Arima T, Murata H, Hamada T. Analysis of composition and structure of hard autopolymerizing reline resins. J Oral Rehabil 1996;23:346-52.
  • 38. Standard AT. D6272–02. Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending, ASTM International, West Conshohocken, PA 2002.
  • 39. Chitchumnong P, Brooks S, Stafford G. Comparison of three-and four-point flexural strength testing of denture-base polymers. Dent Mater 1989;5:2-5.
Current Research in Dental Sciences-Cover
  • Başlangıç: 1986
  • Yayıncı: Atatürk Üniversitesi