BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS

ABSTRACT  Aim: The purpose of this study is to compare the stress formations of two different implant designs in augmented maxillary sinuses using the three-dimensional (3D) finite elements analysis method.   Material and Methods: A 3D model of atrophic posterior maxilla involving the maxillary sinus was created with computer software by using a computerized tomography image of a real patient. Similarly, implants in two different designs, prosthetic superstructures, and graft applied maxillary sinus were simulated. Four groups were obtained in total with two types of implants (Ankyos: A, Xive: X) with different designs, and two different scenerarios including control models (A1 and X1) without maxillary sinuses and maxilla models with grafted maxillary sinuses (A2 and X2). In these groups, stress analysis on cortical bone, trabecular bone and graft material were conducted under the forces close to real masticatory forces.  Results: Tension-type stresses in cortical bone as a result of vertical loading, was lower in X Groups. When control group models were compared with maxillar sinus augmentation (MSA) models, no significant difference was revealed. In trabecular bone and graft material, no significant difference was revealed except for the A2 model which generated lower stresses. Compression-type stresses in cortical bone as a result of vertical loading, less stress formation was observed in Group A models. When MSA models were compared, X2 group caused more stress formation. In control groups the results were similar. In trabecular bone and graft material, no significant difference was found. Tension-type stresses in cortical bone as a result of oblique loading, no significant differences were revealed. In trabecular bone and graft material, in all models, Group A caused significantly less stress. Compression-type stresses in cortical bone as a result of oblique loading, significantly less stress formation was measured in Group A models. When MSA models were compared, the implant in the X2 group led to more stress formation. In the control groups, the results were similar. In the tension-type stresses in trabecular bone and graft material, no significant difference was revealed except for the A2 model which led to less stress. The stress values formed on the graft material were quite close.   Conclusion: Implant design with “V” shaped thread (Group X) caused more stress formation in almost all conditions, except vertical compression stresses caused by vertical loadings, in comparison to the models with square shaped thread form implants (Group A). Keywords: Dental implants; Finite element analysis; Implant design; Sinus floor augmentation OGMENTE MAKSİLLER SİNUS BÖLGESİNE UYGULANAN IKI FARKLI IMPLANT TASARIMININ OLUŞTURDUĞU STRESLERIN BIYOMEKANIK OLARAK KARŞILAŞTIRILMASI ÖZ Amaç: Bu çalışmanın amacı 3 boyutlu (3D) sonlu elemanlar stres analizi yöntemini kullanarak, posterior maksiller bölgede greft kullanılarak sinüs tabanı yükseltilmesi yapılmış örneklerde iki farklı implant tasarımının stres oluşumuna etkilerini karşılaştırmaktır. Gereç Ve Yöntem: Gerçek bir hastaya ait bilgisayarlı tomografi görüntüsü kullanılarak maksiller sinüsü de içeren atrofik posterior maksillanın 3D modeli bilgisayar yazılımları ile oluşturulmuştur. Benzer şekilde iki farklı tasarımda implant modelleri, protetik üst yapılar ve maksiller sinüse uygulanmak üzere greft materyali canlandırılmıştır. Farklı tasarıma sahip iki tip implant (Ankyos: A, Xive: X), maksiller sinüsün ihmal edildiği kontrol modellerine (A1 ve X1) ve içerisine greft materyali yerleştirilen sinuse sahip maksilla modellerine yerleştirilerek (A2 ve X2) toplamda 4 grup elde edilmiştir. Oluşturulan bu gruplarda, teknik olanakların elverdiği ölçüde gerçek yaşamdaki çiğneme kuvvetlerine benzer kuvvetler altında kortikal, trabeküler ve greft materyali üzerinde oluşan streslerin analizi yapılmıştır.   Bulgular: Vertikal kuvvetler karşısında kortikal kemikte oluşan gerilme stresleri X gruplarında daha düşük bulunmuştur. Kontrol grupları ile sinus ogmentasyonu (SO) grupları karşılaştırıldığında anlamlı bir fark oluşmamıştır. Trabekuler kemik ve greft materyalinde daha düşük stress oluşturan A2 modeli hariç diğer modellerde anlamlı fark oluşmamıştır. Vertikal kuvvetlere karşı oluşan sıkışma streslerinde, kortikal kemikte A gruplarında daha düşük stresler ölçülmüştür. SO gruplarında X2 modelinde daha yüksek stress oluşmuştur. Kontrol gruplarında ise fark gözlenmemiştir. Trabeküler kemik ve greft materyalinde ise bir fark gözlenmemiştir. Oblik kuvvetler sonucu oluşan gerilme steslerinde, kortikal kemikte bir fark bulunamamıştır. Trabeküler kemik ve greft materyalinde ise A grubunda düşük stress değeleri oluşmuştur. Oblik kuvvetlere karşı oluşan sıkışma tipi streslerde, kortikal kemikte A gruplarında düşük stresler gözlenmiştir. SO gruplarında X2 modeli daha yüksek stress oluşturmuştur. Kontrol grupları arasında ise fark bulunamamıştır. Oblik kuvvetlere karşı oluşan gerilme streslerinde, trabeküler kemik ve greft materyalinde, daha düşük stresler oluşan A2 modeli haricinde fark gözlenmemiştir.        Sonuç: Üçgen yiv tasarımlı implantlara (Grup X) sahip modellerde, kare yiv tasarımında implantlara (Grup A) sahip modellere göre, vertikal kuvvetler sonucu oluşan sıkışma stresleri dışında, neredeyse her koşulda daha fazla stres oluşumu gözlenmiştir. Anahtar Kelimeler: Dental implant; Implant tasarımı; Sinüs taban yükseltmesi; Sınırlı eleman analizi

___

  • 1. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12:306-17.
  • 2. Jung UW, Hong JY, Lee JS, Kim CS, Cho KS, Choi SH. A hybrid technique for sinus floor elevation in the severely resorbed posterior maxilla. J Periodontal Implant Sci. 2010;40:76-85.
  • 3. Sahin S, Cehreli MC, Yalcin E. The influence of functional forces on the biomechanics of implant-supported prostheses--a review. J Dent. 2002;30:271-82.
  • 4. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent. 2004;92:523-30.
  • 5. Nelson SJ, Ash MM. Wheeler's Dental Anatomy, Physiology and Occlusion. 9 ed: Saunders; 2009.
  • 6. Huang HL, Fuh LJ, Ko CC, Hsu JT, Chen CC. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2009;24:455-62.
  • 7. Tepper G, Haas R, Zechner W, Krach W, Watzek G. Three-dimensional finite element analysis of implant stability in the atrophic posterior maxilla: a mathematical study of the sinus floor augmentation. Clin Oral Implants Res. 2002; 13:657-65.
  • 8. Fanuscu MI, Vu HV, Poncelet B. Implant biomechanics in grafted sinus: a finite element analysis. J Oral Implantol. 2004;30:59-68.
  • 9. Fanuscu MI, Iida K, Caputo AA, Nishimura RD. Load transfer by an implant in a sinus-grafted maxillary model. Int J Oral Maxillofac Implants. 2003;18:667-74.
  • 10. Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30:223-33.
  • 11. Geramy A, Morgano SM. Finite element analysis of three designs of an implant-supported molar crown. J Prosthet Dent. 2004;92:434-40.
  • 12. Ramoğlu S, Ozan O. Finite element methods in dentistry. J Dent Fac Atatürk Uni. 2014;Supplement: 9:175-80. 13. Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofac Res. 2014;4:200-3.
  • 14. Szwedowski TD, Whyne CM, Fialkov JA. Toward characterization of craniofacial biomechanics. J Craniofac Surg. 2010;21:202-7.
  • 15. Lundgren S, Rasmusson L, Sjostrom M, Sennerby L. Simultaneous or delayed placement of titanium implants in free autogenous iliac bone grafts. Histological analysis of the bone graft-titanium interface in 10 consecutive patients. Int J Oral Maxillofac Surg. 1999;28:31-7.
  • 16. Tatum H, Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am. 1986;30:207-29.
  • 17. Al-Nawas B, Schiegnitz E. Augmentation procedures using bone substitute materials or autogenous bone - a systematic review and meta-analysis. Eur J Oral Implantol. 2014;7 Suppl 2:S219-34.
  • 18. Akpinar I, Anil N, Parnas L. A natural tooth's stress distribution in occlusion with a dental implant. J Oral Rehabil. 2000;27:538-45.
  • 19. Chowdhary R, Halldin A, Jimbo R, Wennerberg A. Evaluation of stress pattern generated through various thread designs of dental implants loaded in a condition of immediately after placement and on osseointegration--an FEA study. Implant Dent. 2013;22:91-6.
  • 20. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004;31:233-9.
Current Research in Dental Sciences-Cover
  • Başlangıç: 1986
  • Yayıncı: Atatürk Üniversitesi