Simvastatin ve mevastatin'in anjiogenez inhibisyonu üzerine etkilerinin koryoallantoik membran modelinde araştırılması

Amaç. Bu çalışmanın amacı klinik tedavide sık olarak kullanılan statinlerdenmevastatinin anjiogenez inhibisyonu üzerine etkilerini döllenmiş tavuk yumurtaları üzerinde,koryoallantoik membran modelini (CAM modeli) kullanarak kıyaslamaktır. Yöntem. ÇalışmadaRoss 308 cinsi döllenmiş tavuk yumurtaları kullanıldı. Döllenmiş tavuk yumurtaları 37,5°C‟de%80 rölatif nemli ortamda horizontal pozisyonda inkübe edildi. Kuluçkanın beşinci günündeyumurtanın künt tarafından enjektör yardımıyla 5 mL albumin alındı ve yumurtanın diğer ucundan2-3 cm çapında kabuk kesilerek çıkarıldı. Kabuktaki bu açıklık laboratuvar filmi ile kapatıldı vekoryoallantoik membran modeli yaklaşık 2 cm çapa ulaşana kadar 72 saat daha inkübe edildi. Herbir yumurtaya koryoallantoik membran üzerine etken madde içeren bir pellet yerleştirildi. İlaçuygulamasından (bevacizumab, simvastatin ve mevastatin; 10-4M, 10-5M ve 10-6Mkonsantrasyon) sonra yumurtalar 24 saat daha inkübe edildi. Stereoskopik mikroskop altındaBürgermeister ve arkadaşlarının skorlama sistemi kullanılarak pellet uygulama bölgesindeki damaryapısı değerlendirildi. Bulgular. Çalışmamızda negatif kontrol olarak ilaç içermeyen agar disklerkullanıldı. Negatif kontrol yumurtalarının hiç birinde anjiogenez engellenmedi ve anti-anjiogeniketki puanı 0 olarak bulundu. Pozitif kontrol olarak antianjiogenik etkinliği kanıtlanmışbevacizumab kullanıldı. Bevacizumab‟ın 10-4M,10-5M ve 10-6M konsantrasyonlarındaantianjiogenetik skor değerleri sırasıyla 1,58 , 1,55 ve 1,00 olarak bulundu. Simvastatinin vemevastatinin 10-4M, 10-5M ve 10-6M konsantrasyonları için ortalama antianjiyogenik skordeğerleri sırası ile 0,93 , 0,66 , 0,53 ve 1,0, 0,80 ve 0,66 olarak bulundu. Hem simvastatinin hemde mevastatinin her üç konsantrasyonunun da anti anjiogenik etkiye sahip olduğu saptandı. Bu ikiilacın 10-4M konsantrasyonlarının meydana getirmiş olduğu anti anjiogenik etki gücü arasındaanlamlı bir fark bulunamadı. Ancak azalan konsantrasyonlar birbirleri ile karşılaştırıldığındamevastatinin 10-5M ve 10-6 M konsantrasyonlarda simvastatine göre daha anlamlı bir antianjiogenik etki meydana getirdiği saptandı. Sonuç. Sonuç olarak simvastatin ve mevastatin CAMmodelinde antiantiogenik etkinlik gösteren statinlerdir. Bu iki statin lipid düşürücü etkileriyanında, anjiogenez inhibisyonu yaparak; plak içi antianjiogenik etkiyle, plak rüptürü ve bunabağlı ciddi komplikasyonlardan da korunma sağlayabilir.

Investigating the effects of simvastatin and mevastatin on angiogenesis in chorioallantoic membrane model

Aim. The purpose of this study is to compare the effects of Simvastatin and Mevastatin,commonly used statins in clinic practice, on angiogenesis in chorioallontioc membrane models byusing fertilized chicken eggs. Methods. In this study, Ross 308, fertilized chicken eggs were used.The fertilized chicken eggs were incubated in horizontal position with environmental conditions of37.5 °C temperature and 80% relative humidity. On the fifth day of the incubation period, 5 ml ofalbumen was taken through the eggshell with a syringe and a shell piece of 2-3 cm in diameter wasremoved from the contrary side of the eggs. The windows on the egg shells were sealed withgelatin and thereafter, the eggs were incubated for 72 more hours to have chorioallontiocmembrane models reaching 2 cm in diameter. The pellets containing active substrate were placedon the chorioallantoic membrane of each egg. After drug administration (bevacizumab,Simvastatin and Mevastatin; 10-4M, 10-5M ve 10-6M concentration), the eggs were incubated for24 hours again. Under a stereoscopic microscope, vascular structure around the pellets wasevaluated using a scoring system of Bürgermeister et al. Results. Drug-free agar discs were usedas negative control in our study. Angiogenesis was not inhibited in any negative control eggs andanti-angiogenic effect score was found as 0 .Bevacizumab was used as positive control. In 10-4 M, 10-5M and 10-6M concentrations, antiangiogenic score of Bevacizumab were found 1,58, 1,55and 1,00, respectively. For 10-4M, 10-5M and 10-6M concentrations of Simvastatin andMevastatin, antiangiogenic scores were found as 0.93, 0.66, 0.53 and 1.0, 0.80, 0.66, respectively.Both Mevastatin and Simvastatin were found to have antiangiogenic effects in each threeconcentrations. There wasn‟t a significant difference between antiangiogenic effects of these twodrugs in 10-4M. But when lower concentrations were compared it is found that Mevastatin hadsignificantly higher antiangiogenic effect than Simvastatin at 10-5M and 10-6M concentrations.Conclusion. In conclusion, Simvastatin and Mevastatin are statins which shows antiangiogeniceffect in chorioallontioc membrane models. Besides they can the lipid-lowing effects of statinsthey can also provide. Protection against plaque rupture related serious complication by theintraplaque antiangiogenesis effect

___

  • 1. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9: 653-60.
  • 2. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235: 442-7.
  • 3. Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-4.
  • 4. Haubner R. Alphavbeta3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 2006; 33 Suppl 1: 54-63.
  • 5. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature 2005; 438: 954-9.
  • 6. Plosker GL, McTavish D. Simvastatin. A reappraisal of its pharmacology and therapeutic efficacy in hypercholesterolaemia. Drugs 1995; 50: 334-63.
  • 7. Kayaalp O. Rasyonel Tedavi Yönünden Tıbbi Farmakoloji 1995 Cilt-1, Feryal Matbaacılık, Ankara.
  • 8. Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2003; 2: 517-26.
  • 9. Horiuchi N, Maeda T. Statins and bone metabolism. Oral diseases 2006; 12: 85- 101.
  • 10. Alegret M, Silvestre JS. Pleiotropic effects of statins and related pharmacological experimental approaches. Methods Find Exp Clin Pharmacol 2006; 28: 627-56.
  • 11. Garrett IR, Gutierrez G, Mundy GR. Statins and bone formation. Cur Pharm Des 2001; 7: 715-36.
  • 12. Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med 2001; 5: 378-87.
  • 13. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000; 101: 207-13.
  • 14. Dupuis J, Tardif JC, Cernacek P, Théroux P. Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes. The RECIFE (reduction of cholesterol in ischemia and function of the endothelium) trial. Circulation 1999; 99:3227-33.
  • 15. Leung WH, Lau CP, Wong CK. Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolaemic patients. Lancet 1993; 341: 1496-500.
  • 16. Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J Am Coll Cardiol 1999; 33: 234-41.
  • 17. Jorge PA, Osaki MR, de Almeida E. Rapid reversal of endothelial dysfunction in hypercholesterolaemic rabbits treated with simvastatin and pravastatin. Clin Exp Pharmacol Physiol 1997; 24: 948-53.
  • 18. Katz MS. Therapy insight: Potential of statins for cancer chemoprevention and therapy. Nature clinical practice. Oncology 2005; 2: 82-9.
  • 19. Wolfrum S, Grimm M, Heidbreder M, Dendorfer A, Katus HA, Liao JK, Richardt G. Acute reduction of myocardial infarct size by a hydroxymethyl glutaryl coenzyme a reductase inhibitor is mediated by endothelial nitric oxide synthase. J Cardiovasc Pharmacol 2003; 41: 474-80.
  • 20. Taylor, PC. Serum vascular markers and vascular imaging in assessment of rheumatoid arthritis disease activity and response to therapy.Rheumatology (Oxford) 2005; 44: 721-8.
  • 21. Bürgermeister J, Paper DH, Vogl H, Linhardt RJ, Franz G. LaPSvS1, a (1-->3)- beta-galactan sulfate and its effect on angiogenesis in vivo and in vitro. Carbohydr Res 2002; 337: 1459-66.
  • 22. Rosen L. Antiangiogenic strategies and agents in clinical trials. Oncologist 2000; 5: 20-7.
  • 23. Wickström SA, Alitalo K, Keski-Oja J. An Endostatin-derived Peptide Interacts with Integrins and regulates Actin Cytoskeleton and Migration of Endothelial Cells. J Biol Chem 2004; 279: 20178-85.
  • 24. Kampa M, Nifli AP, Notas G, Castanas E. Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol 2007; 159: 79-113.
  • 25. Ramsay LE, Haq IU, Jackson PR, Yeo WW, Pickin DM, Payne JN. Targeting lipid-lowering drug therapy for primary prevention of coronary disease: an updated Sheffield table. The Lancet 1996; 348: 387-8.
  • 26. Chade AR, Zhu X, Mushin OP, Napoli C, Lerman A, Lerman LO. Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia. FASEB J 2006; 20: 1706-8.
  • 27. Nishimoto-Hazuku A, Hirase T, Ide N, Ikeda Y, Node K. Simvastatin stimulates vascular endothelial growth factor production by hypoxia-inducible factor-1alpha upregulation in endothelial cells. J Cardiovasc Pharmacol 2008; 51: 267-73.
  • 28. Zacharek A, Chen J, Cui X, Yang Y, Chopp M. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke 2009; 40: 254- 60.
  • 29. Zhu XY, Daghini E, Chade AR, Napoli C, Ritman EL, Lerman A, Lerman LO. Simvastatin prevents coronary microvascular remodeling in renovascular hypertensive pigs. J Am Soc Nephrol 2007; 18: 1209-17.
  • 30. Ahn KS, Sethi G, Aggarwal BB. Simvastatin potentiates TNF-alpha-induced apoptosis through the down-regulation of NF-kappaB-dependent antiapoptotic gene products: role of IkappaBalpha kinase and TGF-beta-activated kinase-1. J Immunol 2007; 178: 2507. 16.
  • 31. Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 2007; 24: 1132-46.
  • 32. Zhang Y, Naggar JC, Welzig CM, Beasley D, Moulton KS, Park HJ, Galper JB. Simvastatin inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout mice: possible role of ERK. Arterioscler Thromb Vasc Biol 2009; 29: 1764-71.
  • 33. Wang C, Tao W, Wang Y, Bikow J, Lu B, Keating A, Verma S, Parker TG, Han R, Wen XY. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol. 2010; 58: 418-26.
  • 34. Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Double-edged role of statins in angiogenesis signaling. Circ Res 2002; 90: 737-44.
Cumhuriyet Tıp Dergisi (ELEKTRONİK)-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Cumhuriyet Üniversitesi Tıp Fakültesi