Tungstat ve Molibdat Katkılı Duvar Kâğıtlarının Beta Radyasyon Absorbsiyon Özelliklerinin İncelenmesi

Radyasyonla tedavi ve görüntüleme merkezlerinde kullanılan zırhlama materyalinin etkin bir şekilde radyasyona karşı koruma sağlaması ve bu malzemenin düşük maliyetli olması çok önemlidir. Bu nedenle faklı zırhlama materyallerinin geliştirilmesi üzerinde çalışmalar devam etmektedir. Bu çalışmada, farklı yüzdelerde sodyum tungstat (Na2WO4) ve sodyum molibdat (Na2MoO4) ile kaplanmış duvar kâğıtlarının beta radyasyon soğurma özellikleri araştırılmıştır. Duvar kâğıtları üzerine farklı yoğunluklarda (% 100 çöktürülmüş kalsiyum karbonat (PCC), 2.5 gr, 5 gr, ve 7.5 gr.) Na2WO4 ve Na2MoO4 kaplanarak (0.172-0.258 mm aralığında) duvar kağıtlarının radyasyon soğurma özellikleri incelenmiştir. 4 MeV enerjili elektronlar ile kâğıtlar ışınlanmış ve PTW marka elektron detektörü ile ölçümler alınmıştır. Duvar kâğıtlarının lineer soğurma katsayıları elde edilerek bu sonuçlardan yarı değer kalınlığı (HVL) ve onda bir değer kalınlığı (TVL) hesaplanmıştır. Elde edilen sonuçlara göre duvar kâğıtlarının yüzeyini kaplamak için kullanılan kaplama materyallerinde Na2WO4 ve Na2MoO4 yoğunluğu arttıkça ve kaplama kalınlığı arttıkça bu kâğıtların beta radyasyonu soğurma özelliklerinin arttığı görülmektedir.

Investigation of Beta Radiation Absorption Properties of Tungstate and Molybdate Doped Wallpapers

It is very important that the shielding material used in radiation treatment and imaging centers can effectively protect against radiation and that this material is cost-effective. Therefore, studies are underway on the development of different types of shielding materials. In this study, radiation absorption properties of sodium tungstate (Na2WO4) and sodium molybdate (Na2MoO4) coated wall papers were investigated. The beta radiation absorption properties of these elements which are applied on wall papers in different densities (100% precipitated calcium carbonate (PCC), 2.5 g, 5 g, and 7.5 g amounts of Na2WO4 and Na2MoO4 and various thicknesses (0.172-0.258 mm) were investigated. The wallpapers were irradiated with 4 MeV-energized electrons and measurements were taken with the PTW brand electron detector. The linear absorption coefficients of the wallpapers were obtained and half value layer (HVL) and one-tenth value layer (TVL) were calculated from these results. According to the results, it is observed that the beta radiation absorption properties of these wallpapers increase as the density of Na2WO4 and Na2MoO4 increases and as the coating thickness increases in the coating materials used to cover the surface of the wallpapers.

___

  • Köklü, N., Effects of Radiation on Human Health and Its Applıcatıon Fıelds in Medıcal, Master Thesis, Selçuk University, Institute of Science, 2006.
  • Martin J. E., Physics for Radiation Protection: A Handbook”, 2nd ed., Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2006.
  • Aggrey-Smith S., Preko K., Owusu F. W., and Amoako J. K., Study of Radiation Shielding Properties of selected Tropical Wood Species for X-rays in the 50-150 keV Range, Journal of Science and Technology 4 (2016) 1-8.
  • Abrath, F. G., Bello, J., and Purdy, J. A., Attenuation of Primary and Scatter Radiation in Concrete and Steel for 18 MeV X-Rays from a Clinac-20 Linear Accelerator., Health Physics, 45(5) (1983) 969- 73.
  • Barish, R. J., Evaluation of a New High-Density Shielding Material., Health Physics, 64(4) (1993) 412-6.
  • Al-Affan, I. A. M., Estimation of the Dose at the Maze Entrance for X-Rays from Radiotherapy Linear Accelerators, Med. Phys., 27(1) (2000) 231-8.
  • Çatak M.N., Shielding Linear Accelerator Devices According to NCRP–151 Report, Master Thesis, Ankara University, Institute of Science, 2012.
  • Tel, E. Sarpun, İ. H., Şahan, M., Bulbul A. and Özgen, M., Analysis of Dose—Thickness Interaction with X-Rays Energy of 6 and 18 MeV for Beech Wooden Materials, Journal of Physical Science and Application, 7(2) (2017) 42-45.
  • VARİAN, Varian Medical Systems, Clinac, On-Board Imager and Rapidarc, Are Registered Trademarks, And Exact and Laserguard Are Trademarks of Varian Medical Systems, Inc. 2012.
  • PTW-Freiburg and Ptw-New York: Advanced Markus, Bragg Peak, Curıementor, Dıamentor, Farmer, Markus, Nomex, Octavıus, Pin Point, Roos, Trufıx, 2017.
  • Agar, O., et al., An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nuclear Engineering and Technology, 51(3) (2019) 853-859.
  • Akkaş A., Determination of the Tenth and Half Value Layer Thickness of Concretes with Different Densities, Acta Physica Polonica A, 129 (2016) 770-772.
  • Kavaz, E., et al., The Mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceramics International, 45(12) (2019) 15348-15357.
  • Safety Reports Series, Radiation Protection in the Design of Radiotherapy Facilities, IAEA, Vienna, No. 47, (2006), ISBN 92–0–100505–9.
  • EPA Chemical and Products Database (CPDat), Adres:https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID2052788#exposure. Retrieved November 18, 2019.