β Işınlaması sonrası Kuvarsit Kayacının Termolüminesans Özellikleri
Bu çalışmada, Türkiye’de Karaisalı (Adana)’dan toplanan doğal kuvarsit kayacının termolüminesans karakteristiği, bir radyasyon dozimetresi olarak kullanmak amacıyla oda sıcaklığında β ışınlaması yapıldıktan sonra incelenmiştir. Kuvarsit mineralinin ışıma eğrisi belirgin bir şekilde 110 oC ve 250 oC'de iki tepe noktası ve 375 oC 'de bir omuzu göstermektedir. Bilgisayarla Işıma Eğrisi Ayrıştırma (CGCD) yöntemi kullanılarak tepeler ayrıştırılmış ve kinetik parametreler (aktivasyon enerjisi Ea, frekans faktörü (s) ve kinetik derece (b)) belirlenmiştir. CGCD yönteminden sonra, bu ışıma eğrisinin en az sekiz tepeden oluştuğu görülmüştür. Ayrıca IR yönteminden elde edilen Arrhenius grafiği yöntemiyle kinetik parametreler belirlendi. Bu çalışmada, düşük sıcaklıktaki tepe değerleri için CGCD tekniği ile ayrılan tepeler ile (P1-P3) IR yöntemi ile hesaplanan kinetik parametreler arasında bir ilişki olduğu gösterilmiştir. Ek olarak, dozimetrik materyal olarak kullanılabilirliğini araştırmak için tekrar kullanılabilirlik testi yapılmış ve 10 kez tekrarlanan sonuçlarda % 2'lik bir değişim gözlenmiştir. Bu çalışmaların yanında kuvarsit örneğinin karakterizasyonu için X-ışını kırımı (XRD) ve taramalı elektron mikroskobu (SEM-) enerji yayılımlı X-ışını analizi (EDX) sonuçları incelendi.
Thermoluminescence Properties of Quartzite Rock after β-irradiation
In the present study, the thermoluminescence characteristics of natural quartzite collected fromKaraisalı (Adana) in Turkey were investigated after β irradiation at room temperature with the purpose to useas radiation dosimetry. The glow curve of quartzite mineral shows two peaks at 110 oC and 250 oC and ashoulder at 375 oC, explicitly. The resulting peaks, which were examined using the computer glow curvedeconvulation (CGCD) method, were deconvuluted and kinetic parameters (activation energy Ea, frequencyfactor (s) and kinetic degree (b)) were determined. After CGCD methods, it was seen that the glow curvesuporposed at least eight peaks. Additionally, kinetic parameters were determined using by Arrhenius plotobtained from initial rise (IR) method. In this study, it is shown that there is a correspondence between kineticparameters calculated by IR method and peaks deconvoluated by CGCD technique in low temperature region(P1-P3). Additionally, reusability test was conducted to investigate its usability as a dosimetric material, and achange of 2% was observed in the results of 10 repeated times. Besides to the characterization of this sampleX-ray diffraction (XRD) and scanning electron microscopy (SEM) - energy dispersive X-ray (EDX) resultswere investigated.
___
- McKeever S.W.S., Moscovitch M.,
Townsend P.D., Thermoluminescence
Dosimetry Materials: properties and uses,
(1995) Nucl. Technol. Publishing, Asford.
- Göksu H. Y., Regulla, D. and Drexler, G.
Present status of practical aspects of
individual dosimetry. Part II: East European
Countries, Radiation Protection–78 Part I,
II (Luxemburg: Commission of the
European Communities) Belgium (1994).
- Planque G.D. and Gesell T.F.,
Thermoluminescence dosimetry—
Environmental applications, The
International Journal of Applied Radiation
and Isotopes, 33-11 (1982) 1015-1034.
- Aitken M. J., Thermoluminescence dating,
(1985), Academic Press, London.
- Scholefield R. B., Prescott J. R., Franklin
A. D., Fox P. J., Observations on some
thermoluminescence emission centres in
geological quartz, Radiation Measurements,
23 2-3 (1994) 409-412.
- Toktamiş H., Necmeddin A. Y., Topaksu
M., Investigation of the stability of the
radiation sensitivity of TL peaks of quartz
extracted from tiles, Nuclear Instruments
and Methods in Physics Research Section
B: Beam Interactions with Materials and
Atoms, 262 (1) (2007) 69-74.
- Yüksel M., Thermoluminescence and
dosimetric characteristics study of quartz
samples from Seyhan Dam Lake Terracces,
Canadian Journal of Physics, In press,
doi.org/10.1139/cjp-2017-0741.
- Brito Farias T. M. D., Watanabe S., A
comparative study of the
thermoluminescence properties of several
varieties of Brazilian natural quartz, Journal
of Luminescence, 132 (10) (2012) 2684-
2692.
- Subedi B., Oniyab E., Polymeris G.S.,
Afouxenidis D., Tsirliganis N.C., Kitis G.,
Thermal quenching of thermoluminescence
in quartz samples of various origin, Nuclear
Instruments and Methods in Physics
Research Section B: Beam Interactions with
Materials and Atoms, 269 (6) (2011) 572-
581.
- Cosma C., Timar A. , Benea V., Pop I.,
Jurcut T., Ciorba D., Using natural
luminescent materials and highly sensitive
sintered dosimeters MCP-N (LiF:Mg,Cu,P)
in radiation dosimetry, Journal of
Optoelectronics and Advanced Materials,
10 (3) (2008) 573 – 577.
- Trindade N. M., Kahn H., Yoshimura E.
M., Thermoluminescence of natural
BeAl2O4:Cr3+ Brazilian mineral:
Preliminary studies, Journal of
Luminescence, 195 (2018) 356-361.
- Macedo Z.S., Valerio M.E.G., de Lima J.F.,
Thermoluminescence mechanism of Mn2+,
Mg2+ and Sr2+ doped calcite, Journal of
Physics and Chemistry of Solids, 60 (1999)
1973-1981.
- Fleming S.J., Study of
Thermoluminescence of Crystalline
Extracts from Pottery, Archaeometry 9
(1966) 170-173.
- Kitis E., Zaragoza C.E., Furetta C.,
Thermoluminescence properties of Chile
Guajillo (paprika) Mexicano. Applied
Radiation and Isotopes, 63 (2) (2005) 247-
254.
- Availible at:
https://en.wikipedia.org/wiki/Phengite
- Garcia-Guinea J. and Correcher
V., Luminescence spectra of alkali
feldspars: influence of crushing on the
ultraviolet emission band, Spectrosc.
Lett., 33 (2000) 103-113.
- Murray A.G. and Wintle A.S.,
Luminescence sensitivity changes in quartz,
Radiat. Meas., 30 (1) (1999) 107-118.
- Preusser F., Chithambo M.L., Götte T.,
Martini M., Ramseyer K., Sendezera E.J.,
Susino G.J., Wintle A.G., Quartz as a
natural luminescence dosimeter, Earth-
Science Reviews, 97 (1–4), (2009) 184-214.
- Puchalska M. and Bilski P., GlowFit—a
new tool for thermoluminescence glowcurve
deconvolution, Radiation
Measurements, 41 6 (2006) 659-664.
- Bos A.J.J., Piters, J. M., Gomez Ros J.M.
and Delgado A., 1993. (GLOCANIN, an
Intercomparision of Glow Curve Analysis
Computer Programs) IRI-CIEMAT Report,
pp. 131-93-005 IRI Delft.
- Chung, K.S., Choe, H.S., Lee, J.I., Kim,
J.L. and Chang, S.Y., A computer program
for the deconvolution of
thermoluminescence glow curves.
Radiation Protection Dosimetry, 115 (2005)
1-4.
- Topaksu M., Yüksel M., Dogan T., Nur N.,
Akkaya R., Yegingil Z., Topak Y.,
Investigation of the characteristics of
thermoluminescence glow curves of natural
hydrothermal quartz from Hakkari area in
Turkey, Physica B: Condensed Matter, 424
(1) (2013) 27-31.
- Joseph Daniel, D., Kim, H. J., Kim S.,
Synthesis, X-ray, and thermoluminescence
properties of Li3K3Y7(BO3)9, Ceramics
International, 44 (7) (2018) 8184-8189.
- Yuksel M., Dogan T., Balci-Yegen S., Akça
S., Portakal Z.G., Kucuk N., Topaksu M.,
Heating rate properties and kinetic
parameters of thermoluminescence glow
curves of La-doped zinc borate, Radiation
Physics and Chemistry, 151 (2018) 149-
155.
- Furetta C. and Weng P.S., Operational
Thermoluminescence Dosimetry, (1998),
World Scientific, Singapore.
- Furetta C. (2003). Handbook of
Thermoluminescence, (2003), World
Scientific, Singapore.