Harmonik sayıları içeren toplamlar için bazı denklikler
Bu makalede harmonik sayıları ve ikinci mertebeden lineer dizilerin terimlerini içeren toplamlar hakkında bazı denklikler gösterilmiştir.
Some Congruences for Sums Involving Harmonic Numbers
In this paper, we establish some congruences involving sums with harmonic numbers and the termsof second-order linear sequences.
___
- Granville A., The square of the Fermat quotient, Integers: Electronic Journal of Combinatorial Number Theory, 4 (2004) #A22.
- Kılıç E., Ömür N. and Türker Ulutaş Y., Alternating sums of the powers of Fibonacci and Lucas numbers, Miskolc Math. Notes, 12-1 (2011) 87-103.
- Kılıç E., Ömür N. and Türker Ulutaş, Y., Some finite sums involving generalized Fibonacci and Lucas numbers, Discrete Dynamics in Nature and Society, (2011) 1-11, doi:10.1155/2011/284261.
- Koparal S. and Ömür N., On congruences related to central binomial coefficients, harmonic and Lucas numbers, Turkish Journal of Mathematics, 40 (2016) 973-985.
- Melham R.S., Certain classes of finite sums that involve generalized Fibonacci and Lucas numbers, The Fibonacci Quarterly, 42-1 (2004) 47–54.
- Ömür N. and Koparal S., Some congruences related to harmonic numbers and the terms of the second order sequences, Mathematica Moravica, 20 (2016) 23-37.
- Sun Z.W., Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140-2 (2012) 415-428.
- Sun Z.W. and Zhao L.L., Arithmetic theory of harmonic numbers (II), Colloq. Math., 130-1 (2013) 67-78.
- Wolstenholme J., On certain properties of prime numbers, Quart. J. Math., 5 (1862) 35-39.