DNA Biyosensör Uygulamaları İçin Karbon Nanotüp Modifiye Yüzeylerin Ferrisiyanür ve Guanin Sinyallerine Dayalı Olarak Elektrokimyasal İncelenmesi

Bu çalışmada karbon nanotüpler (CNT) ile modifiye edilmiş karbon pastası (CPE) ve laboratuvar koşullarında basılarak üretilen perde baskılı karbon (SPE) elektrotların performansı karşılaştırılmış ve dönüşümlü voltametri(CV), kare dalga voltametri (SWV) veya diferansiyel puls voltametri (DPV) teknikleri kullanılarak elde edilen potasyum ferri / ferrosiyanür veya guanin sinyallerindeki artış miktarı tayin edilmiştir. Bu çalışmada elektrotlara kimyasal (H2SO4, aseton, N, N-Dimetilformamid veya NaOH) veya elektrokimyasal (farklı potansiyel uygulamaları) gibi farklı aktivasyon prosedürleri uygulanmıştır. Nanotüp modifiye elektrota uygulanan aktivasyon prosedürünün sinyal zenginleşmesi üzerine güçlü etkileri olduğu gözlenmiştir. Bu prosedürlerden NaOH ile aktivasyonda elde edilen guanin sinyalinin yaklaşık 62 kat arttığı tespit edilmiştir. Bu çalışmada ayrıca farklı nanotüp türlerinin aktivasyon proseslerine farklı yanıtlar verdiği de bulunmuştur. Nanotüp bazlı biyosensörün optimum şartları da ayrıca sunulmuştur.

Electrochemical Investigation of Carbon Nanotube Modified Surfaces Based on Ferricyanide and Guanine Signals for DNA Biosensor Applications

This study was designed to investigate the performance of carbon nanotubes (CNT) modified carbon paste and carbon printed electrodes (SPE) produced in laboratory conditions. The effect of carbon nanotube use on signal enrichment was determined by using cyclic voltammetry (CV), square wave voltammetry (SWV) or differential pulse voltammetry (DPV) techniques based on potassium ferricyanide/ ferrocyanide or guanine signal. The application of different activation procedures to the electrode surface such as chemical (H2SO4, acetone, N,N-Dimethylformamide or NaOH) or electrochemical (different potential applications) were presented in this study. It was observed that the activation procedure applied to the nanotube modified electrode has strong effects on signal enrichment. From these procedures it was determined that the guanine signal obtained in activation with NaOH increased about 62-fold. It was also found that different nanotube species gave different responses to the activation processes. The optimum conditions of the nanotube-based biosensor were also presented.

___

  • Lazerges M., Bedioui F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal. Bioanal. Chem. 405 (2013) 3705–3714.
  • Liu Z., Tabakman S., Welsher K., Dai H.J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2 (2009) 85–120.
  • Trojanowicz M. Analytical applications of carbon nanotubes: a review. TrAC Trends Anal. Chem. 25 (2006) 480–489.
  • Wang J., Lin Y.H. Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal. Chem. 27 (2008) 619–626.
  • Li F., Peng J., Wang J., Tang H., Tan L., Xie Q., Yao S. Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosens. Bioelectron. 54 (2014) 158–164.
  • Zhu X., Li J., He H., Huang M., Zhang X., Wang S. Application of nanomaterials in the bioanalytical detection of diseaserelated genes yayinindan Biosensors and Bioelectronics 74 (2015) 113–133.
  • Erdem A., Kuralay F., Cubukcu H.E., Congur G., Karadeniz H., Canavar E. Sensitive sepiolite-carbon nanotubes based disposable electrodes for direct detection of DNA and anticancer drug–DNA interactions. Analyst 137 (2012) 4001–4004.
  • Sengiz C., Congur G., Eksin E., Erdem A. Multiwalled Carbon Nanotubes‐Chitosan Modified Single‐Use Biosensors for Electrochemical Monitoring of Drug‐DNA Interactions. Electroanal. 27 (2015) 1855 – 1863.
  • Zhang Q.D., Piro B., Noël V., Reisberg S., Pham M.C. Functionalization of single-walled carbon nanotubes for direct and selective electrochemical detection of DNA. Analyst 136 (2011) 1023–1028.
  • Lee A.C., Du D., Chen B., Heng C.K., Lim T.M., Lin, Y. Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels. Analyst 139 (2014) 4223–4230.
  • Thuy N.T., Tama P.D., Tuan M.A., Le A.-T., Tama L.T., Thu V.V., Hieu N.V., Chien N.D., Detection of pathogenic microorganisms using biosensor based on multi-walled carbon nanotubes dispersed in DNA solution. Curr. Appl. Phys. 12 (2012) 1553–1560.
  • Zhang X., Jiao K., Liu S., Hu Y. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Anal. Chem. 81 (2009) 6006–6012.
  • Ozkan-Ariksoysal D., Kayran Y.U., Yilmaz F.F., Ciucu A.A., David I.G., David V., Hosgor-Limoncu M., Ozsoz M. DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples. Talanta 166 (2017) 27–35.
  • Chekin F., Gorton L., Tapsobea I. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor. Anal. Bioanal. Chem. 407 (2015) 439–446.
  • Erdem A., Karadeniz H., Canavar P.E., Congur G. Single-Use Sensor Platforms Based on Carbon Nanotubes for Electrochemical Detection of DNA Hybridization Related to Microcystis spp. Electroanal. 24 (2012) 502 – 511.
  • Jeong S.H., Kim C.S., Yang J. Comparison of the sensitivity of thiolated aptamer based biosensor according to the condition of electrode substrates. BioChip J. 4 (2010) 141-147.
  • Cui G., Yoo J.H., Lee J.S., Yoo J., Uhm J.H., Cha G.S., Nam H. Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 126 (2001) 1399–1403.
  • Carpini G., Lucarelli F., Marrazza G., Mascini M. Oligonucleotide-modified screen-printed gold electrodes for enzyme- amplified sensing of nucleic acids. Biosens. Bioelectron. 20 (2004) 167–175.
  • Trojanowicz M., Mulcandani A., Mascini M. Carbon nanotubes-modified screen-printed electrodes for chemical sensors and biosensors. Anal. Lett.,37 (2004) 3185- 3204
  • Wen J.G., Li W. Z., Huang Z. P., Tu Y., Wang D. Z., Chen J. H., Yang S. X., Ren Z. F. Microstructural Studies on CVD grown multiwall carbon nanotubes and their breaking behaviors by TEM., 199th meeting of The electrochemical Society, March 25-30, 2001, Washington, DC.
  • Williams K.A., Veenhuizen P.T.M. de la Torre BG., Eritja R., Dekker C. Nanotechnology: carbon nanotubes with DNA recognition. Nature, 420 (2002), 761.
  • Lin Y., Lu F., Wang J. Disposable carbon nanotube modified screen printed biosensor for amperometric detection of organophosphorus pesticides and verve agents. Electroanal., 16 (2004) 145-149.
  • Topkaya S.N., Ozkan-Ariksoysal D. Prostate Cancer Biomarker Detection with Carbon Nanotubes Modified Screen Printed Electrodes Electroanal. 28 (2016) 1077 – 1084.
  • Morrin A., Killard A.J., Smyth M. R. Electrochemical characterization of commercial and home-made Screen-Printed Carbon electrodes. Anal. Lett. 36 (2003), 2021–2039.
  • Lee P.T., Lowinsohn D., Compton R. G. The Use of Screen-Printed Electrodes in a Proof of Concept Electrochemical Estimation of Homocysteine and Glutathione in the Presence of Cysteine Using Catechol. Sensors 14 (2014), 10395–10411.
  • Patris S., De Pauw P., Vandeput M., Huet J., Van Antwerpen P., Muyldermans S., Kauffmann J.M. Nanoimmunoassay onto a screen printed electrode for HER2 breast cancer biomarker determination. Talanta 130 (2014), 164–170.