Çift Katmanlı Demir Filmlerin Manyeto-Empedans Etkilerinin İncelenmesi

Cam zemin üzerinde manyetik çift katmanlı arasında manyetik olmayan bir tabaka kullanılarak (Fe/Cu/Fe) üretilen manyeto-empedans hücre (ME) elektron mikroskobu, X-ışını kırınımı, manyetik ve manyeto-empedans ölçümleri yapılarak incelenmiştir. ME etkisini gözlemlemek için frekansa bağlı empedans ölçümleri statik düşük manyetik alan altında yapılmıştır. Hücrelerin empedans değeri, 1 - 25 MHz frekans aralığında ve DC manyetik alanda (-25 - 25 Oe) sabit 4 mA AC akım kaynağı kullanılarak karakterize edilmiştir. Çift tepe tepkileri elde edilerek, ME etkisi % 35' e ve duyarlılığı 23.7 %/Oe' e kadar çıkartılmıştır. Gelecekteki sensör uygulamaları için bu malzeme, düşük fiyat aralığında ve kıyasla yüksek hassasiyet özelliklerine sahip dev manyeto-empedans etkisi gösterdiğinden dolayı umut verici bir aday haline getirilmiştir.

Investigation of Magneto-Impedance Effect of Bilayer Iron Films

Magnetoimpedance (MI) cell was fabricated using a non-magnetic layer among magnetic bilayer (Fe/Cu/Fe) on the glass substrate has been studied by using electron microscopy, X-ray diffraction, magnetic and magnetoimpedance measurements. In order to observe MI effect, frequency dependence of impedance measurements has performed under applying static low magnetic fields. The impedance value of the cells has been characterized by using constant 4 mA AC current source at frequencies 1 - 25 MHz and DC magnetic fields (-25 to 25 Oe). Double peak responses have been obtained, showing MI ratios up to % 35 and its sensitivity is around 23.7 %/Oe. For future sensing applications, this material is made a promising candidate for giant magnetoimpedance effect with the range of low price and relatively high sensitivity features.

___

  • [1]. R.S. Beach, A.E. Berkowitz, Giant magnetic field dependent impedance of amorphous FeCoSiB wire, Appl. Phys. Lett. 64 (1994) 3652–3654.
  • [2]. J. E. Lenz, A Review of Magnetic Sensors, Proceedings of the IEEE, 78, 6, 1990.
  • [3]. C. Morón, C. Cabrera, A. Morón, A. García and M. González Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review Sensors 2015, 15, 28340-28366.
  • [4]. B.D. Culity, Introduction to Magnetic Materials; Addison-Wesley: Boston, MA, USA, 1972.
  • [5]. D.C. Jiles, C.C.H. Lo The role of new materials in the development of magnetic sensors and actuators. Sens. Actuators A Phys. 2003, 106, 3–7.
  • [6]. P. Ripka, K. Závěta, Chapter 3 - Magnetic Sensors: Principles and Applications. Handb. Magn. Mater. 2009, 18, 347–420.
  • [7]. L. Kraus, The theoretical limits of giant magneto-impedance, J. Magn. Magn. Mater. 354 (1999) 167–196.
  • [8]. G.V. Kurlyandskaya, N.G. Bebenin, V.O. Vas’kovskii, Giant magnetic impedance of wires with a thin magnetic coating, Phys. Metal. Metallogr. 111 (2) (2011) 133–154.
  • [9]. G.V. Kurlyandskaya, D. de Cos, S.O. Volchkov, Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review, Russ. J. Non-Destr. Test. 45 (6) (2009) 377–398.
  • [10]. X. Wang, W. Yuan, Z. Zhao, X. Li, J. Ruan, X. Yang,Giant magnetoimpedance effect in CuBe/NiFeBandCuBe/insulator/NiFeBelectroless-depositedcompositewires Magnetics, IEEE Trans., 41 (2005) 113-115.
  • [11]. L D.L. Chen, X. Li, H.L. Pan, H.Y. Luan, Z.J. Zhao, Magneto-Impedance Effect of Composite Wires Prepared by Chemical Plating under DC Current, Nano-Micro Lett., 6 (2014) 227-232.
  • [12]. Z. Zhou, Y. Zhou, and L. Chen, Perpendicular GMI Effect in Meander NiFeandNiFe/Cu/NiFe Film IEEE Transactıons On Magnetics, 44, 2008 2252-2254.
  • [13]. B. Li and J. Kosel, Three dimensional simulation of giant magneto-impedance effect in thin film structures J. Appl. Phys. 109 (2011) 07E519.