Aralık Değerli Bulanık Parametreli Sezgisel Bulanık Esnek Kümeler ve Uygulamaları

Son yıllarda, belirsizlik içeren yapılar için farklı perspektifler sunan bulanık kümeler, aralık değerli bulanık kümeler, sezgisel bulanık kümeler ve esnek kümeler birçok araştırmacının ilgisini çekmiştir. Ayrıca, sezgisel bulanık kümeleri esnek kümelerle birleştirerek oluşturulan sezgisel bulanık esnek kümeler de geniş ölçüde çalışılmıştır. Bu çalışmada, aralık değerli bulanık parametreli sezgisel bulanık esnek küme (ADBPSBE küme) kavramı tanıtılmıştır. Bu küme, esnek kümelerin, bulanık esnek kümelerin, bulanık parametreli (bulanık) esnek kümelerin, aralık değerli bulanık parametreli (bulanık) esnek kümelerin, sezgisel bulanık esnek kümelerin ve bulanık parametreli sezgisel bulanık esnek kümelerin genelleştirilmesidir. ADBPSBE kümeler için tümleyen, birleşim ve kesişim gibi temel işlemler tanımlanmıştır. Ayrıca, bu işlemlerin özellikleri detaylı olarak araştırılmıştır. Son olarak, ADBPSBE kümeler üzerine temellenmiş birleştirme operatörlerini kullanarak bir algoritma oluşturulmuştur. Önerilen algoritmanın uygulanabilirliğini ve geçerliliğini test etmek için örnekler verilmiştir.

Interval-Valued Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets and Their Applications

In recent years, the fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets and soft sets, which offer different perspectives for the structures containing the uncertainties, have attracted the interest of many researchers. Also, the intuitionistic fuzzy soft sets produced by combining the intuitionistic fuzzy sets with the soft sets have been widely studied. In this work, the concept of interval-valued fuzzy parameterized intuitionistic fuzzy soft set (IVFPIFS set) is introduced. This set is the generalization of soft sets, fuzzy soft sets, fuzzy parameterized (fuzzy) soft sets, interval-valued fuzzy parameterized (fuzzy) soft sets, intuitionistic fuzzy soft sets and fuzzy parameterized intuitionistic fuzzy soft sets. For the IVFPIFS sets, basic operations such as complement, union and intersection are defined. Also, the properties of these operations are investigated in detail. Lastly, an algorithm by using the aggregation operators based on the IVFPIFS sets is constructed. The examples are given to verify the feasibility and validity of the proposed algorithm.

___

  • Zadeh, L.A., Fuzzy sets, Inform. Control, 8 (1965) 338-353.
  • Sambuc, R., Fonctions Φ-floues. Application a l’aide au diagnostic en pathologie thyroidienne. Ph. D. Thesis, Univ. Marseille, France, 1975.
  • Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986) 87-96.
  • Atanassov, K. and Gargov, G., Interval-valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989) 343-349.
  • Molodtsov, D., Soft set theory-first results, Comput. Math. Appl., 37 (1999) 19-31.
  • Ali, M.I., Feng, F., Liu, X., Min, W.K. and Shabir, M., On some new operations in soft set theory, Comput. Math. Appl., 57 (2009) 1547-1553.
  • Maji, P.K., Biswas, R. and Roy, A.R., Soft set theory, Comput. Math. Appl., 45 (2003) 555-562.
  • Sezgin, A. and Atagün, A.O., On operations of soft sets, Comput. Math. Appl., 61 (2011) 1457-1467.
  • Aktaş, H. and Çağman, N., Soft sets and soft groups, Inform. Sci., 177 (2007) 2726-2735.
  • Feng, F., Jun, Y.B. and Zhao, X., Soft semirings, Comput. Math. Appl., 56 (2008) 2621-2628.
  • Acar, U., Koyuncu, F. and Tanay, B., Soft sets and soft rings, Comput. Math. Appl., 59 (2010) 3458-3463.
  • Atagün, A.O. and Sezgin, A., Soft substructures of rings, fields and modules, Comput. Math. Appl., 61 (2011) 592-601.
  • Sezgin, A., Atagün, A.O. and Aygün, E., A note on soft near-rings and idealistic soft near-rings, Filomat, 25 (2011) 53-68.
  • Çağman, N., Çıtak, F. and Enginoğlu, S., FP-soft set theory and its applications, Ann. Fuzzy Math. Inform., 2 (2011) 219-226.
  • Zorlutuna, I. and Atmaca, S., Notes on fuzzy parametrized soft sets, Cumhuriyet Science Journal, 39 (2018) 818-827.
  • Çağman, N. and Deli, I., Products of FP-soft sets and their applications, Hacet. J. Math. Stat., 41 (2012) 365-374.
  • Çağman, N. and Deli, I., Means of FP-soft sets and their applications, Hacet. J. Math. Stat., 41 (2012) 615-625.
  • Deli, I. and Çağman, N., Relations on FP-soft sets applied to decision making problems, Journal of New Theory, 3 (2015) 98-107.
  • Deli, I. and Çağman, N., Intuitionistic fuzzy parameterized soft set theory and its decision making, Appl. Soft Comput., 28 (2015) 109-113.
  • Deli, I. and Karataş, S., Interval valued intuitionistic fuzzy parameterized soft set theory and its decision making, J. Intell. Fuzzy Syst., 30 (2016) 2073-2082.
  • Çağman, N., Enginoğlu, S. and Çıtak, F., Fuzzy soft set theory and its applications, Iran. J. Fuzzy Syst., 8 (2011) 137-147.
  • Atagün, A.O., Kamacı, H. and Oktay, O., Reduced soft matrices and generalized products with applications in decision making, Neural Comput. Applic., 29 (2018) 445-456.
  • Çağman, N. and Enginoğlu, S., Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010) 3308-3314.
  • Çağman, N. and Enginoğlu, S., Fuzzy soft matrix theory and its application in decision making, Iran. J. Fuzzy Syst., 9 (2012) 109-119.
  • Kamacı, H., Atagün, A.O. and Sönmezoğlu, A., Row-products of soft matrices with applications in multiple-disjoint decision making, Appl. Soft Comput., 62 (2018) 892-914.
  • Kamacı, H., Atagün, A.O. and Aygün, E., Difference operations of soft matrices with applications in decision making, Punjab Univ. J. Math., 51 (2019) 1-21.
  • Petroudi, S.H.J., Nabati, Z. and Yaghobi, A., Some new results on fuzzy soft matrices, Turkish Journal of Fuzzy Systems, 8 (2017) 52-62.
  • Maji, P.K., Biswas, R. and Roy, A.R., Intuitionistic fuzzy soft sets, The Journal of Fuzzy Mathematics, 9 (2001) 677-692.
  • Xu, Y.-J., Sun, Y.-K. and Li, D.-F., Intuitionistic fuzzy soft set, 2nd International Workshop on Intelligent Systems and Applications IEEE, Wuhan, China, 2010.
  • Çağman, N. and Karataş, S., Intuitionistic fuzzy soft set theory and its decision making, J. Intell. Fuzzy Syst., 24 (2013) 829-836.
  • Deli, I. and Çağman, N., Similarity measure of IFS-sets and its application in medical diagnosis, Ann. Fuzzy Math. Inform., 11 (2016) 841-854.
  • Broumi, S., Majumdar, P. and Smarandache, F., New operations on intuitionistic fuzzy soft sets based on first Zadeh’s logical operators, Journal of New Results in Science, 4 (2014) 71-81.
  • Chetia, B., Das, P.K., Some results of intuitionistic fuzzy soft sets and its application in decision making, Appl. Math. Sci., 7 (2013) 4693-4712.
  • Deli, I., npn-soft sets theory and applications, Ann. Fuzzy Math. Inform., 10 (2015) 847-862.
  • Deli, I., Interval-valued neutrosophic soft sets and its decision making, Int. J. Mach. Learn. Cyber., 8 (2017) 665-676.
  • Deli, I., Eraslan, S. and Çağman, N., ivnpiv-neutrosophic soft sets and their decision making based on similarity measure, Neural Comput. Applic., 29 (2018) 187-203.
  • Dinda, B. and Samanta, T.K., Relations on intuitionistic fuzzy soft sets, General Mathematics Notes., 1 (2010) 74-83.
  • Karaaslan, F., Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets with applications in decision making, Ann. Fuzzy Math. Inform., 11 (2016) 607-619.
  • Yin, Y., Li, H. and Jun, Y.B., On algebraic structure of intuitionistic fuzzy soft sets, Comput. Math. Appl., 64 (2012) 2896-2911.
  • Tan, C., A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS, Expert Syst. Appl., 38 (2011) 3023-3033.
  • Xu, Z., Choquet integrals of weighted intuitionistic fuzzy information, Inf. Sci., 180 (2010) 726-736.
  • Çağman, N. and Enginoğlu, S., Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207 (2010) 615-625.