Orak hücreli anemi hastalarında ozmolarite, asidite ve volüm değişikliklerinin eritrositlerdeki potasyum-klorür sistemi üzerindeki etkileri

AMAÇ: Bu çalışmanın amacı Orak Hücreli Anemi’de ozmolarite ve asidite değişikliklerinin eritrositlerdeki potasyum-klor kotranport sistemine olan etkilerini araştırmaktır. YÖNTEM: Normal ve oraklaşmış eritrositlerde değişik pH ve ozmolarite değerlerinde KCC sistemi aktivitesini inceledik. BULGULAR: Oraklaşmış eritrositlerde KCC aktivitesinin normal eritrositlere göre artmış bulunmuştur. Ayrıca, bu aktivite osmolarite ve asiditeye bağlı olarak değişiklikler göstermiştir. TARTIŞMA: OHA tedavisinde polimerizasyon ve oraklaşmanın engellenmesi önemlidir. KCC aktivitesindeki veya eritrositlerdeki Gardos kanal aktivitesindeki artış dehidratasyona neden olur. Bu çalışmada KCC aktivitesi literatürle uyumlu olarak oraklaşmış eritrositlerde normallere göre daha yüksek bulunmuştur. Ayrıca normal ve oraklaşmış eritrositlerde KCC aktivitesinin pH 6’da ve 8’de inhibe olduğu,pH 6,5-7,5’da aktive olduğu görülmüştür. SONUÇ: OHA’de; osmolarite ve asiditeyi etkileyebilecek yaklaşımlar geliştirilerek, KCC aktivitesini azaltan ve dehidratasyonu engelleyen yeni tedavi modaliteleri oluşturabilir.

PURPOSE: The aim of this study is to investigate the effect of changes in osmolarity and acidity on potassium-chlorur cotransport system (KCC) of erythrocytes in Sickle Cell Anemia (SCA). METHODS: We studied KCC activity at different pH and osmolarity values in both normal and sickled erythrocytes. RESULTS: KCC activity was found to be increased in sickled erythrocytes when compared to normal. This activity was also effected by osmolarity and acidity.CONCLUSION: Dicouraging polymerysation and sickling is important in the treatment of SCA. Any increment in the activity of KCC system or Gardos channel activity which lies in the erythrocytes triggers the dehydratation. In this study KCC activity is found higher in sickled erythrocytes than normal that is consistent with the literature. KCC activity is also observed to be inhibited in pH 6 and 8 where as activated pH 6,5-7,5 in both normal and sickled erythrocytes.

___

  • 1. Adragna NC, Lauf PK. Oxidative activation of K-Cl cotransport by diamide in erythrocytes from humans with red cell disorders, and from several other mammalian species. J Membr Biol 1997; 155 (3): 207-217.
  • 2. Armsby CC, Brugnara C, Alper SL. Cation transport in mouse erythrocytes: role of K(+)-Cl- cotransport in regulatory volume decrease. Am J Physiol 1995; 268 (4 Pt 1): C894-902.
  • 3. Bize I, Dunham PB. Staurosporine, a protein kinase inhibitor, activates K-Cl cotransport in LK sheep erythrocytes. Am J Physiol 1994; 266 (3 Pt 1): C759-770.
  • 4. Bize I, Guvenc B, Buchbinder G, et al. Stimulation of human erythrocyte K-Cl cotransport and protein phosphatase type 2A by n-ethylmaleimide: role of intracellular Mg++. J Membr Biol 2000; 177 (2): 159-168.
  • 5. Bize I, Guvenc B, Robb A, et al. Serine/threonine protein phosphatases and regulation of K-Cl cotransport in human erythrocytes. Am J Physiol 1999; 277 (5 Pt 1): C926-936.
  • 6. Brugnara C. Erythrocyte membrane transport physiology. Curr Opin Hematol 1997; 4 (2): 122-127.
  • 7. Brugnara C. Therapeutic strategies for prevention of sickle cell dehydration. Blood Cells Mol Dis 2001; 27 (1): 71-80.
  • 8. Brugnara C, Bunn HF, Tosteson DC. Regulation of erythrocyte cation and water content in sickle cell anemia. Science 1986; 232 (4748): 388-390.
  • 9. Brugnara C, Kopin AS, Bunn HF, et al. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. J Clin Invest 1985; 75 (5): 1608-1617.
  • 10. Brugnara C, Tosteson DC. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol 1987; 252 (3 Pt 1): C269-276.
  • 11. Cossins AR, Weaver YR, Lykkeboe G, et al. Role of protein phosphorylation in control of K flux pathways of trout red blood cells. Am J Physiol 1994; 267 (6 Pt 1): C1641-1650.
  • 12. De Franceschi L, Bachir D, Galacteros F, et al. Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease. J Clin Invest 1997; 100 (7): 1847-1852.
  • 13. Dunham PB. Effects of urea on K-Cl cotransport in sheep red blood cells: evidence for two signals of swelling. Am J Physiol 1995; 268 (4 Pt 1): C1026-1032.
  • 14. Eaton WA, Hofrichter J. Hemoglobin S gelation and sickle cell disease. Blood 1987; 70 (5): 1245-1266.
  • 15. Gibson JS, Hall AC. Stimulation of KCl co-transport in equine erythrocytes by hydrostatic pressure: effects of kinase/phosphatase inhibition. Pflugers Arch 1995; 429 (3): 446-448.
  • 16. Godart H, Ellory JC. KCl cotransport activation in human erythrocytes by high hydrostatic pressure. J Physiol 1996; 491 ( Pt 2): 423-434.
  • 17. Guvenc B. Potasyum Klor Kotranspoteri ve volüm düzenleyici mekanizmalar I I. Ç.Ü.T.F Arşiv Dergisi 1999; 7 (3): 36-45.
  • 18. Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. Yale J Biol Med 2001; 74 (3): 179-184.
  • 19. Jennings ML, al-Rohil N. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol 1990; 95 (6): 1021-1040.
  • 20. Lauf PK. K+:Cl- cotransport: sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell. J Membr Biol 1985; 88 (1): 1-13.
  • 21. Lauf PK, Bauer J, Adragna NC, et al. Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol 1992; 263 (5 Pt 1): C917-932.
  • 22. Namboodiripad AN, Jennings ML. Permeability characteristics of erythrocyte membrane to okadaic acid and calyculin A. Am J Physiol 1996; 270 (2 Pt 1): C449-456.
  • 23. Orringer EP, Brockenbrough JS, Whitney JA, et al. Okadaic acid inhibits activation of K-Cl cotransport in red blood cells containing hemoglobins S and C. Am J Physiol 1991; 261 (4 Pt 1): C591-593.
  • 24. Tosteson DC, Shea E, Darling RC. Potassium and sodium of red blood cells in sickle cell anemia. J Clin Invest 1952; 31 (4): 406-411.
  • 25. Willis JS, Anderson GL. Activation of K-Cl cotransport by mild warming in guinea pig red cells. J Membr Biol 1998; 163 (3): 193-203.