Soğutma Panellerinde Kullanılabilecek Yeni Tip Kompozit Yalıtım Malzemelerin Sayısal İncelenmesi

Enerji tasarrufu, ısıtma ve soğutma sisteminde karşılaşılan en önemli problem sahalarından birisidir.Soğutma panellerinde ısı kaybının azaltılması; işletme maliyetinin azaltılması, sistem verimininarttırılması ve enerji tasarrufu açısından büyük öneme sahiptir. Bu sebeple bu çalışmada; bir endüstriyelsoğuk hava deposunun soğutma panelinde kullanılabilecek yeni tip yalıtım malzemelerinin farklıkonfigürasyonlar için ısıl performansı sayısal olarak incelenmiştir. Çalışmada iki farklı çözüm yaklaşımıincelenmiştir. Birinci yaklaşımda; yalıtım malzemeleri tabakalar halinde kullanılmış ve üç farklıkonfigürasyon oluşturulmuştur. İkinci yaklaşımda; poliüretan (PU) esaslı homojen yapılı kompozityalıtım malzemelerinin ısıl performansı incelenmiştir. Sayısal çalışmada; Ansys Fluent 19.3 HesaplamalıAkışkanlar Dinamiği programı kullanılmıştır. Sonuç olarak; Magpan-PU tabakalı yapısının(Konfigürasyon-2), yalnızca PU köpük kullanılma durumuna (Konfigürasyon-1) göre ısı kaybında%9,3’lük bir azalmaya sebep olduğu belirlenmiştir. Poliüretan esaslı homojen yapılı kompozit yalıtımmalzemeleri karşılaştırıldığında ise; %5 Silika aerojel katkılı PU köpük malzemenin, yalnızca PU köpükmalzeme kullanılması durumuna göre ısıl performansında %19,9 artış gösterdiği, %1 nanokil içeren PUköpük malzeme kullanılma durumunda ise, ısıl performansında %9,8 azalma tespit edilmiştir. Modelsonuçlarının, fiziksel durumu iyi bir şekilde temsil edebildiği, homojen yapıyı farklı tip yalıtımmalzemelerinin modellenmesinde farklı parametreler için kullanılabileceği değerlendirilmiştir

Numerical Analysis of New Type Composite Insulation Materials for Cooling Panels

Energy saving is an important problem area in heating and cooling systems. Reducing heat loss from cooling panels is crucial for reducing operating cost, increasing system efficiency and energy saving. For his reason in this paper, the thermal performance of new type of insulation materials for an industry cold storage is numerically investigated for different configurations. Two different solution methods are used. For the first method, insulation materials are used in layers in three different configurations. For the second method, thermal performance of PU based homogeneous composite insulation materials is numerically investigated. Ansys Fluent 19.3 CFD program is used for numerical analysis. As a result; using Magpan-PU composite insulation material (configuration-2) causes a reduction of 9.3% on heat lossaccording to the reference PU foam (configuration -1). For comparing PU based homogeneous composite insulation materials, using 5% doped silica aerogel PU causes an increase of 19.9% on the thermal performance of insulation material and using 1% doped nano-clay PU causes a decrease of 9.8% on the thermal performance of insulation material. It is determined that model results can represent the physical process and can be used for modeling different type of insulation materials for different parameters

___

  • 1. Evans, J.A., Hammond, E.C., Gigiel, A.J., Fostera, A.M., Reinholdt, L., Fikiin, K., Zilio, C., 2014. Assessment of Methods to Reduce the Energy Consumption of Food Cold Stores. Applied Thermal Engineering, 62(2), 697-705.
  • 2. Dylewski, R., Adamczyk, J., 2016. Study on Ecological Cost-effectiveness for the Thermal Insulation of Building External Vertical Walls in Poland. Journal of Cleaner Production, 133, 467-478.
  • 3. Xie, T., He, Y.L., Tong, Z.X., 2016. Analysis of Insulation Performance of Multilayer Thermal Insulation Doped with Phase Change Material. International Journal of Heat and Mass Transfer, 102, 934-943.
  • 4. Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H., 2003. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Applied Thermal Engineering, 23(3), 251-283.
  • 5. Wu, J.W., Sung, W.F., Chu, H.S., 1999. Thermal Conductivity of Polyurethane Foams. International Journal of Heat and Mass Transfer, 42(12), 2211-2217.
  • 6. Amaral, C., Pinto, S.C., Silva, T., Mohseni, F., Amaral, J.S., Amaral, V.S., Vicente, R., 2020. Development of Polyurethane Foam Incorporating Phase Change Material for Thermal Energy Storage. Journal of Energy Storage, 28, 101177.
  • 7. Sevindir, M.K., Demir, H., Ağra, Ö., Atayılmaz, Ş.Ö., Teke, İ., 2017. Modelling the Optimum Distribution of Insulation Material. Renewable Energy, 113, 74-84.
  • 8. Abdou, A.A., Budaiwi, I.M., 2005. Comparison of Thermal Conductivity Measurements of Building Insulation Materials Under Various Operating Temperatures. Journal of Building Physics, 29(2), 171-184.
  • 9. Ahmed, M., Meade, O., Medina, M.A., 2010. Reducing Heat Transfer Across the Insulated Walls of Refrigerated Truck Trailers by the Application of Phase Change Materials. Energy Conversion and Management, 51(3), 383-392.
  • 10. Li, Y., Sun, Y., Qiu, J., Liu, T., Yang, L., She, H., 2020. Moisture Absorption Characteristics and Thermal Insulation Performance of Thermal Insulation Materials for Cold Region Tunnels. Construction and Building Materials, 237, 117765.
  • 11. Huang, L., Piontek, U., 2017. Improving Performance of Cold-chain Insulated Container with Phase Change Material: An Experimental Investigation. Applied Sciences, 7(12), 1288.
  • 12. Michel, B., Glouannec, P., Fuentes, A., Chauvelon, P., 2017. Experimental and Numerical Study of Insulation Walls Containing a Composite Layer of PU-PCM and Dedicated to Refrigerated Vehicle. Applied Thermal Engineering, 116, 382-391.
  • 13. Kozak, Y., Farid, M., Ziskind, G., 2017. Experimental and Comprehensive Theoretical Study of Cold Storage Packages Containing PCM. Applied Thermal Engineering, 115, 899-912.
  • 14. Laguerre, O., Aissa, M.B., Flick, D., 2008. Methodology of Temperature Prediction in an Insulated Container Equipped with PCM. International Journal of Refrigeration, 31(6), 1063-1072.
  • 15. Choi, S.W., Jung, J.M., Yoo, H.M., Kim, S.H., Lee, W.I., 2018. Analysis of Thermal Properties and Heat Transfer Mechanisms for Polyurethane Foams Blown with Water. Journal of Thermal Analysis and Calorimetry, 132(2), 1253-1262.
  • 16. Serrano, A., Borreguero, A.M., Garrido, I., Rodríguez, J.F., Carmona, M., 2016. Reducing Heat Loss Through the Building Envelope by Using Polyurethane Foams Containing Thermoregulating Microcapsules. Applied Thermal Engineering, 103, 226-232.
  • 17. Amaral, C., Vicente, R., Eisenblätter, J., Marques, P.A.A.P., 2017. Thermal Characterization of Polyurethane Foams with Phase Change Material. Ciência & Tecnologia dos Materiais, 29(2), 1-7.
  • 18. Estravís, S., Tirado-Mediavilla, J., SantiagoCalvo, M., Ruiz-Herrero, J.L., Villafañe, F., Rodríguez-Pérez, M.Á., 2016. Rigid Polyurethane Foams with Infused Nanoclays: Relationship Between Cellular Structure and Thermal Conductivity. European Polymer Journal, 80, 1-15.
  • 19. Nazeran, N., Moghaddas, J., 2017. Synthesis and Characterization of Silica Aerogel Reinforced Rigid Polyurethane Foam for Thermal Insulation Application. Journal of Non-Crystalline Solids, 461, 1-11.
  • 20. Wi, S., Berardi, U., Di Loreto, S., Kim, S., 2020. Microstructure and Thermal Characterization of Aerogel–graphite Polyurethane Spray-foam Composite for High Efficiency Thermal Energy Utilization. Journal of Hazardous Materials, 122656.
  • 21. Septevani, A.A., Evans, D.A., Annamalai, P.K., Martin, D.J., 2017. The Use of Cellulose Nanocrystals to Enhance the Thermal İnsulation Properties and Sustainability of Rigid Polyurethane Foam. Industrial Crops and Products, 107, 114-121.
  • 22. Piszczyk, Ł., Strankowski, M., Danowska, M., Hejna, A., Haponiuk, J.T., 2014. Rigid Polyurethane Foams from a Polyglycerol-based Polyol. European Polymer Journal, 57, 143-150.
  • 23. Cao, Z.J., Liao, W., Wang, S.X., Zhao, H.B., Wang, Y.Z., 2019. Polyurethane Foams with Functionalized Graphene Towards High FireResistance, Low Smoke Release, Superior Thermal Insulation. Chemical Engineering Journal, 361, 1245-1254.
  • 24. Du, X., Qiu, J., Deng, S., Du, Z., Xu C., Wang, H., 2021. Flame-retardant and Solidsolid Phase Change Composites Based on Dopamine-decorated BP Nanosheets/ Polyurethane for Efficient Solarto-thermal Energy Storage, Renewable Energy, 164, 1-10.
  • 25. Zhao, J., Xu, L., Su, Y., Yu, H., Liu, H., Qian, S., Zheng, W., Zhao, Y., 2021. Zr-MOFs Loaded on Polyurethane Foam by Polydopamine for Enhanced Dye Adsorption, Journal of Environmental Science, 11, 177-188.
  • 26. Andersons, J., Kirpluks, M., Cabulis, P., Kalnins, K., Cabulis, U., 2020. Bio-based Rigid High-density Polyurethane Foams as a Structural Thermalbreak Material, Construction and Building Material, 260-120471.
  • 27. Zeng, S., Xing, C., Chen, L., Xu, L., Li, B., Zhang, S., 2020. Green Flame-retardant Flexible Polyurethane Foam Based Oncyclodextrin, Polymer Degrad