Investigation of Alternative Material and Design of Rotary Kiln: A Case Study

Rotary kilns have widespread usage in many field of industry due to continues flow and heating the products inside it, simultaneously. Rotary kiln can be used in the process of alumina, cement, lime, magnesium etc. Rotary kiln material for corrosive process media is usually designated as stainless steel. In some media as high temperature and dilute acidic, even stainless steel can be subject to rapid corrosion. In this study, an alternative material, titanium Gr 2, was investigated instead of conventional 316L (1.4404) quality stainless steel material of rotary kiln. Due to the different physical properties of titanium Gr 2 material, two different alternative designs were prepared and analyzed with the model. In the first design the outside of the titanium shell of the rotary kiln was covered with 316L (1.4404) quality steel material. In this design, different thermal expansion of the materials limited the usage of hybrid materials at high temperature. Therefore, as a second alternative the length of the rotary kiln was extended. According to required product output temperature the required of the length extension was calculated as 4600 mm.

Döner Fırının Alternatif Malzeme ve Tasarımının İncelenmesi: Bir Örnek Olay

Döner fırın, içerisindeki ürünlerin sürekli akması ve aynı zamanda ısıtılması nedeniyle endüstrinin birçok alanında yaygın olarak kullanılmaktadır. Alümina, çimento, kireç, magnezyum vb. işlemlerinde döner fırın kullanılabilmektedir. Bu çalışmada fırınların yaygın bir malzemesi olan klasik 316L (1,4404) kalite çelik malzemesi yerine alternatif bir malzeme olan titanyum Gr 2 malzemesi incelenmiştir. Titanyum Gr 2 malzemenin farklı fiziksel özelliklerinden dolayı model ile iki farklı alternatif tasarım hazırlanmış ve analiz edilmiştir. İlk tasarımda döner fırının titanyum kabuğunun dışı 316L (1,4404) kalite çelik malzeme ile kaplanmıştır. Bu tasarımda malzemelerin farklı termal genleşmeleri, hibrit malzemelerin yüksek sıcaklıkta kullanımını sınırlandırmıştır. Bu nedenle, ikinci bir alternatif olarak döner fırının uzunluğu arttırılmıştır. İstenilen ürün çıkış sıcaklığının elde edilebilmesi için 4600 mm boy uzatmana gerek olduğu hesaplanmıştır

___

1. Janati, K.I., 2020. Thermo-elastic Behavior Study of Rotary Kilns for Cement Plants. Engineering Failure Analysis, 118, 104896.

2. Karamarković, V., Marašević, M., Karamarković, R, Karamarković, M., 2013. Recuperator for Waste Heat Recovery from Rotary Kilns. Appl Therm Eng, 54, 470–480.

3. Zhang, Z, Wu, Y., Li, H., Li, X., Gao, X., 2018. A Simple Step-change Method to Determine Mean Residence Time in Rotary Kiln and a Predictive Model at Low Inclination. Powder Technol, 333, 30–37.

4. Minyou, C., Qijian, Z., 1992. A Real Time Expert Controller for Industrial Rotary Kilns. IFAC Proc, 25, 53–57.

5. Wirtz, S., Pieper, C., Buss, F., Schiemann, M., Schaefer, S., Scherer, V., 2020. Impact of Coating Layers in Rotary Cement Kilns: Numerical investigation with a Blocked-off Region Approach for Radiation and Momentum. Therm Sci Eng Prog, 15, 100429.

6. Haziq Uddin, M., Tafaghodi Khajavi, L., 2020. The Effect of Sulfur in Rotary Kiln Fuels on Nickel Laterite Calcination. Miner Eng, 157, 106563.

7. Kowalski, Z., Kulczycka, J., Wzorek, Z., 2007. Life Cycle Assessment of Different Variants of Sodium Chromate Production in Poland. J Clean Prod, 15, 28–37.

8. Wang, J.L., Hu, G.R., Peng, Z.D., Du, K., 2015. Novel Method to Prepare Sodium Chromate from Carbon Ferrochrome. Trans Nonferrous Met Soc China, 25, 3820–3826.

9. Gao, N., Jia, X., Gao, G., Ma, Z., Quan, C., Naqvi, S.R., 2020. Modeling and Simulation of Coupled Pyrolysis and Gasification of Oily Sludge in a Rotary Kiln. Fuel, 279, 118152.

10. Wulandari, W., Subagjo, S., Tri Mursito, A, Juanjaya, F.J., Alwi, M.F., 2018. Performance of Dolomite Calcination in a Bench-Scale Rotary Kiln. MATEC Web Conf, 156, 1–5.

11. Vijayan, S.N., Sendhilkumar, S., 2014. Industrial Applications of Rotary Kiln in Various Sectors-A Review. International Journal of Engineering Innovation and Research, 3, 342-345.

12. Witt, P.J., Sinnott, M.D., Cleary, P.W., Schwarz, M.P., 2018. A Hierarchical Simulation Methodology for Rotary Kilns Including Granular Flow and Heat Transfer. Miner Eng, 119, 244–62.

13. Yin, H., Zhang, M., Liu, H., 2014. Numerical Simulation of Three-dimensional Unsteady Granular Flows in Rotary Kiln. Powder Technol, 253, 138–145.

14. Gunnarson, A., Andersson, K., Adams, B.R., Fredriksson, C., 2020. Full-scale 3D-modelling of the Radiative Heat Transfer in Rotary Kilns with a Present Bed Material. International Journal of Heat and Mass Transfer, 147, 1-10.

15.Boateng, A.A., Barr, P.V., 1996. A Thermal Model for the Rotary Kiln İncluding Heat Transfer within the Bed. International Journal of International Journal of Heat and Mass Transfer, 39, 2131-2147.

16.Barr, P.V., Brimacombe, J.K., Watkinson, A.P., 1989. A Heat-transfer Model for the Rotary Kiln: Part II. Development of the Crosssection Model. Metall Trans B, 20, 403–419.

17. Uhríčik, M., Sapieta, M., Stankovičová, Z., Palček, P., Oravcová, M., 2016. The Stress Detection of Stainless Steel AISI 304, AISI 316L and AISI 316Ti During Three-point Bending Cyclic Loading. Mater Today Proc, 3, 1189–1194.

18. Agrawal, A., Ghoshdastidar, P.S., 2017. Numerical Simulation of Heat Transfer During Production of Rutile Titanium Dioxide in a Rotary Kiln. Int J Heat Mass Transf, 106, 263–279.

19. Sadighi, S., Shirvani, M., Ahmad, A., 2011. Rotary Cement Kiln Coating Estimator: Integrated Modelling of Kiln with Shell Temperature Measurement. Can J Chem Eng, 89, 116–125.

20. Gorog, J.P., Adams, T.N., Brimacombe, J.K., 1982. Regenerative Heat Transfer in Rotary Kilns. Metall Trans B, 13, 153–163.