Investigation of Asymmetric Transmission Properties of 2D Metallic Photonic Crystal for Optical Diode Application

Current studies combined optics and photonics provide the most promising materials for potential technological and industrial applications, because of their exciting optical and electronic properties. Metals show a lot of optical phenomena associated with their rich dispersion properties, and are widely used in the range from visible to THz frequencies. In this study, asymmetric transmission properties of 2- D photonic crystals have been studied. The effects of different geometric and optical parameters on the transmission are investigated by using MATLAB and freely available MEEP software based on the FDTD method. A novel structure made of silver is used to manipulate electromagnetic propagation of different wave lengths. The simulation results represent transmittance values for the TM mode where the electromagnetic propagation transverse to the same way of incidence wave. As a result, the best comparative asymmetric transmittance values are obtained as 0.75, and 0.15 from top and bottom sides, respectively.

2 Boyutlu Metal Fotonik Kristallerin Asimetrik Özelliklerinin Optik Diyot Uygulaması için Araştırılması

Optik ve fotoniğin birleştirildiği mevcut araştırmalar, potansiyel teknolojik ve endüstriyel uygulamalar için ilginç optik ve elektronik özellikleri sahip olan yeni malzemeler sunmaktadır. Metaller zengin dispersiyon özelliklerine bağlı olarak birçok optik aykırılık gösterir ve görünür bölgeden terahertz frekansına kadar değişik alanlarda kullanılırlar. Bu çalışmada 2-D fotonik kristallerin asimetrik iletim özellikleri incelenmiştir. Çalışmada farklı geometrik ve optik parametrelerin geçirgenlik üzerindeki etkileri FDTD tabanlı MATLAB ve ücretsiz MEEP programı aracılığı ile araştırılmıştır. Farklı dalga boylarında elektromanyetik yayınımı kontrol etmek için gümüşten tasarlanmış özgün bir yapı kullanılmıştır. Simülasyon sonuçları gelen dalga ile aynı yönde iletilen elektromanyetik yayınım için TM modunda geçirgenlik katsayı değerlerini vermektedir. Çalışma sonucunda en iyi asimetrik geçirgenlik katsayı değerleri 0,75 (üstten gelen) ve 0,15 (alttan gelen) olarak elde edilmiştir.

___

1. Moore, G.E., 1975. Progress in Digital Integrated Electronics. Tech. Dig. IEEE Int. Electron Devices Meeting, 11-13.

2. Yablonovitch, E., 1987. Inhibited Spontaneous Emission in Solid-State Physics. Physics Review Letters, 58(20), 2059-2062.

3. John, S., 1987. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physics Review Letters, 58(23), 2486-2489.

4. Stolarek, M., Yavorskiy, D., Kotyński, R., Zapata Rodríguez, C.J., Łusakowski, J., Szoplik, T., 2013. Asymmetric Transmission of Terahertz Radiation through a Double Grating. Optics Letters, 38, 839-841.

5. Cheng, C., Chen, J., Wu, Q.Y., Ren, F.F., Xu, J., Fan, Y.X., Wang, H.T., 2007. Controllable Electromagnetic Transmission Based on Dual- Metallic Grating Structures Composed of Subwavelength Slits. Appl. Phys. Lett. 91,

6. Cheng, C., Chen, J., Shi, D.J., Wu, Q.Y., Ren, F.F., Xu, J., Fan, Y.X., Ding, J., Wang, H.T., 2008. Physical Mechanism of Extraordinary Electromagnetic Transmission in Dual-Metallic Grating Structures. Phys. Rev. B 78, 075406.

7. Xu, J., Cheng, C., Kang, M., Chen, J., Zheng, Z., Fan, Y.X., Wang, H.T., 2011. Unidirectional Optical Transmission in Dual- Metal Gratings in the Absence of Anisotropic and Nonlinear Materials. Opt. Lett. 36, 1905.

8. Taflove, A., Hagness, S.C., 2000. Computational Electrodynamics: The Finite Difference Time-Domain Method 2nd ed. Boston, MA: Artech House Publishers.

9. Berenger, J.P., 1994. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 114, 185-200.

10. Yee, K.S., 1966. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Transscations Antennas Propag.

11. Scalora, M., Dowling, J.P., Bowden, C.M., Bloemer, M.J., 1994. The Photonic Band Edge Optical Diode. J. Appl. Phys., 76(4), 2023-2026.

12. Biancalana F., 2008. All-optical Diode Action With Quasiperiodic Photonic Crystals. J. Appl. Phys., 104(9), 093113.

13. Wang, C., Zhou, C.Z., Li, Z.Y., 2011. On-chip Optical Diode Based on Silicon Photonic Crystal Heterojunctions. Opt. Express, 19(27), 26948–26955.

14. Kurt, H., Yilmaz, D., Akosman, A.E., Ozbay, E., 2012. Asymmetric Light Propagation in Chirped Photonic Crystal Waveguides. Optics Express, 20(18), 20635-20646.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ