Kazı Arını Tasarımında Ampirik Yaklaşımların Kullanımı

Maden planlama ve tasarlama süreci, doğal kaynakların etkin bir şekilde kullanılmasını sağlamak ve madencilik sırasında ortaya çıkan maliyetlerin tümünü azaltmak açısından oldukça önemlidir. Yeraltı madenciliğinde seçilecek üretim yöntemine bağlı olarak, kazı arınlarının seyrelme ve cevher kaybını en aza indirecek şekilde tasarlanması gerekmektedir. Bu noktada kaya kütlesi karakterizasyonu ve kazı arını geometrisi gibi parametreleri göz önünde bulunduran ampirik kazı arını tasarımları dikkat çekmektedir. Duraylı kazı arınlarını tasarlamak üzere, ampirik duraylılık grafiği yönteminin de bu kapsamda yaygın olarak kullanıldığı bilinmektedir. Duraylılık grafiği yöntemi ilk olarak kazı arını tasarımlarını yapmak üzere ortaya konulmuş, ardından kazı arını tasarımı konusunda özellikle metal madenlerinde dünya çapında geniş kabul görmüştür. Yöntem, Tünel Kalitesi Q indeksine dayanmakta ve kazı arını tasarımını etkileyen en önemli faktörleri dikkate almaktadır. Duraylılık grafiği yönteminde geçmişten bugüne, kazı arınlarının duraylılık durumunu tahmin etmedeki güvenilirliğini artırmayı amaçlayan çeşitli gelişmeler yaşanmıştır. Bu çalışma öncelikle duraylılık grafiği yöntemini detaylı bir şekilde tanıtmakta ardından bu konuda yapılan gelişmeleri ele almaktadır.

Using Empirical Approaches in Stope Design

The studies in the mine planning and design process are crucial to ensure efficient use of natural resources and reduce the overall cost of mining. In underground mining, stopes should be designed to minimize the dilution and ore loss depending on the production method to be selected. At this point, empirical stope design that takes into account parameters such as the rock mass characterization and stope geometry draws attention. The empirical modified stability graph method to design stable stopes is known widely used in this context. The stability graph was introduced initially for open stope design and then it has gained wide recognition in open stope design around the world especially in metalliferous mining. The method is based on the tunnelling quality index Q and takes into account the most important factors affecting stope design. From the past to the present, there have been several improvements in the stability graph method aimed at increasing the reliability of the stope in predicting the stability status. This study firstly introduces the stability graph method in detail and then discusses the developments in this regard.

___

  • 1. Barton, N., 1988. Rock Mass Classification and Tunnel Reinforcement Selection Using the QSystem, L. Kirkaldie, Editor. ASTM International: West Conshohocken, PA. 59-88.
  • 2. Capes, G.W., Open Stope Hangingwall Design Based on General and Detailed Data Collection in Rock Masses With Unfavourable Hangingwall Conditions, Ph.D Thesis. 2009, in the Department of Geological and Civil Engineering University of Saskatchewan Saskatoon.
  • 3. Mathews, K.E., Hoek, E., Wyllie, D.C., Stewart, S.B.V., 1981. Prediction of Stable Excavtion for Mining at Depth Below 1000 m in Hard Rock. CANMET Report, DSS Serial No: 0sQ80-00081., Ottawa, 1981.
  • 4. Hutchinson, D.J., Diederichs, M.S.,. 1996. Cablebolting in Underground Mines. Vol. 477. BiTech Publishers Richmond, BC.
  • 5. Potvin, Y., Hadjigeorgiou, J., 2001. The Stability Graph Method for Open-stope Design. Underground Mining Methods: Engineering Fundamentals International Case Studies. Society of Mining, Metallurgy Exploration, Shaffer Parkway, Littleton, CO 80127, USA, 513-520.
  • 6. Potvin, Y., 1988. Empirical Open Stope Design in Canada, Ph.D Thesis. 1988, Vancouver: Dept Mining & Mineral Processing, University of British Columbia.
  • 7. Barton, N., Lien, R., Lunde, J., 1974. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics, 6(4), 189-236.
  • 8. Karpuz, C., Hindistan, M.A., 2006. Kaya mekaniği: ilkeleri, uygulamaları. TMMOB Maden Mühendisler Odası. 233-247.
  • 9. QueensMineDesignWiki, Stability Graph Method. Retrieved from http://minewiki.engineering.queensu.ca/media wiki/index.php/Stability_Graph_Method, 2019.
  • 10. Laubscher, D., 1977. Geomechanics Classification of Jointed Rock Masses-mining Applications. Trans. Instn. Min. Metall, 86, A1-8.
  • 11. Villaescusa, E., 2014. Geotechnical Design for Sublevel Open Stoping. CRC Press. 207-209.
  • 12. Nickson, S.D., 1992. Cable Support Guidelines for Underground Hard Rock Mine Operations, M.A.Sc. Thesis. University of British Columbia.
  • 13. Potvin, Y., Milne, D., 1992. Empirical Cable Bolt Support Design. in Proceedings of International Symposium on Rock Mechanics. Sudbury, ON, Canada.
  • 14. Diederichs, M., Kaiser, P., 1999. Stability of Large Excavations in Laminated Hard Rock Masses: the Voussoir Analogue Revisited. International Journal of Rock Mechanics and Mining Sciences, 36(1), 97-117.
  • 15. Steward, S., Forsyth, W., 1995. The Mathews Method for Open Stop Design. CIM Bull, 88, 45-53.
  • 16. Hadjigeorgiou, J., Leclair, J., Potvin, Y., 1995. An Update of the Stability Graph Method for Open Stope Design. CIM Rock Mechanics and Strata Control session, Halifax, Nova Scotia, 14-18.
  • 17. Clark, L., Pakalnis, R., 1997. An Empirical Design Approach for Estimating Unplanned Dilution from Open Stope Hangingwalls and Footwalls. in Presentation at 99th Canadian Institute of Mining annual conference. Vancouver, BC.
  • 18. Clark, L.M., 1998. Minimizing Dilution in Open Stope Mining With a Focus on Stope Design and Narrow Vein Longhole Blasting, M.A.Sc. Thesis. University of British Columbia.
  • 19. Mawdesley, C., Trueman, R., Whiten, W., 2001. Extending the Mathews Stability Graph for Open-stope Design. Mining Technology, 110(1), 27-39.
  • 20. Suorineni, F.T., 2010. The Stability Graph After Three Decades in Use: Experiences and the Way Forward. International Journal of Mining, Reclamation and Environment, 24(4), 307-339.
  • 21. Neumann, M., 1999. Stability Graph Design Method-A Mining Operator’s Guide. i n C IM Mine Operators' Conference. Bathurst, New Brunswick.
  • 22. Suorineni, F., Tannant, D., Kaiser, P., 1999. Fault Factor for the Stability Graph Method of Open-stope Design. Transactions of the Institution of Mining and Metallurgy Section A-Mining Industry, 108, A92-A104.
  • 23. Milne, D., Pakalnis, R., Grant, D., Sharma, J., 2004. Interpreting Hanging Wall Deformation in Mines. International Journal of Rock Mechanics and Mining Sciences, 41(7), 1139-1151.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ