Hastanelerde Isıtma, Havalandırma ve İklimlendirme Uygulamalarının Enerji ve Ekserji Analizi

Bu çalışmada, Irak, Süleymaniye’deki Qaladze hastanesinde kullanılan HVAC sistemlerinin enerji ve ekserji analizleri termodinamiğin birinci ve ikinci yasalarına göre yapılmıştır. Yapılan analizlere göre kazan ve klima santralleri için ortalama ısıl enerji ve ekserji verimleri sırasıyla %89, %19,5 ve %81,5, %24; chiller grubunun soğutma performans katsayısı ortalama 4,82 olarak hesaplanmıştır. HVACsistemlerinin genel olarak ısıl konforu hastanede sağladıkları tespit edilmiştir. Ancak hastanedeki iç hava kalitesini ve ısıl koşullarını iyileştirmek için HVAC sistemlerinin tüm bileşenlerinin sürekli kontrol edilmesi gerektiği görülmüştür.

Energy and Exergy Analysis of HVAC Applications in Hospitals

In this study, energy and exergy analysis of HVAC systems used in Qaladze hospital in Sulaymaniyah, Iraq were done by using the first and second laws of thermodynamics. The average values of thermal energy and exergy efficiencies for the boiler and air handling units were found as 89%, 19.5% and 81.5%, 24%, respectively. The cooling coefficient of performance of the chiller group was calculated as 4.82 on average. It was determined that HVAC systems generally provide thermal comfort in the hospital. But it was concluded that all components of HVAC systems should be constantly checked to improve the thermal conditions and indoor air quality in the hospital.

___

  • 1. Alhazmy, M.M., 2006. The Minimum Work Required for the Air Conditioning Process, Energy, 31, 2739-2749.
  • 2. Özgener, L. Hepbaşli, A., 2003. HVAC Sistemlerinde Ekserji Analizinin Gerekliliği ve Uygulamaları. VI. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, İzmir, Turkey, 16(1), 3-12. [in Turkish].
  • 3. Kanoğlu, M., Çarpinlioglu, M.O., Yildirim, M., 2004. Energy and Exergy Analyses of an Experimental Open-cycle Desiccant Cooling System, Applied Thermal Engineering, 24, 919-932.
  • 4. Aydin, M., Reis, A.H., Miguel, A.F., 2007. Effect of Flow with Suspended Particles on Convective Heat Transfer and Exergy Balance, International Journal of Energy Research, 33(2), 180-185.
  • 5. Şahin, H.M., Acir, A., Baysal, E., Koçyiğit, E., 2007. Evaluation of Energy Efficiency in Kayseri Sugar Plant by Method of Energy and Exergy Analyses, J. Fac. Eng. Arch. Gazi Univ., 2(1), 111-119.
  • 6. Demircioğlu, A., 2010. Theoretical Investigation of Performances of R22, R407c, and R410a, Which are Substitutes for R22 in a Heat Pump. Gazi University Graduate School of Natural and Applied Sciences, 109, 4-10.
  • 7. Menlik, T., Demircioğlu, A., Özkaya, M.G., 2013. Energy and Exergy Analyses of R22 and its Alternatives R407c and R410a in a Vapor Compression Refrigeration System, Int. J. Exergy, 12(1), 11-30.
  • 8. Çengel, Y.A., Boles, M.A., 2008. Thermodynamics an Engineering Approach. 5th Edition Güven Yayınevi, İzmir, 1, 402-621.
  • 9. Çomakli, K. Karsli, S. Yilmaz, M. Çomakli, Ö., 2007. Termal Sistemlerde Ekserji Verimi, Makine Teknolojileri Elektronik Dergisi, 2, 25-34 [in Turkish].
  • 10. Ergün, A., 2010. Energy and Exergy Analyses of a Shopping Center Which Needs 80.000 m2 Heating and Cooling, Gazi University Graduate School of Natural and Applied Sciences, 30(6), 506-515.
  • 11. Çomakli, K., Yüksek, B., 2002. Kazanlarda Ekserji Analizi, Tesisat Mühendisliği, 33-37 [in Turkish].
  • 12. Çalişkan, H., Tat, E.M., Hepbaşli, A., 2009. Performance Assessment of Internal Combustion Engine at Varying Dead (reference) State Temperatures, Applied Thermal Engineering, 29, 3431-3436.
  • 13. Kotaş, T.J., 1985. The Exergy Method of Thermal Plant Analysis, Butter-Worths, London.
  • 14. United Nations Economic Commission For Europe, 1978. Energy Consumption in the Forest Industries of the ECE Region. Paper presented at the seminar on Energy Aspects of the Forest Industries in Udine, Italy.
  • 15. Ergün, A., Menelik, T., Özkaya, M.G., 2015. Energy and Exergy Analyses of the Heating System in a Multipurpose Building. 2, 77-84.
  • 16. Wu, W.C., Lee, T.S., Chuah, Y.K., Wang, S.K., 2010. Improvement of Airflow and Heat Transfer Performance of Multi-coil Condensers by Different Coil Configurations, Int. J. Refrig, 14, 517-532.
  • 17. Brown, M.W., Bansal, P.K., 2001. An Elemental NTU- Model for Vapourcomperssion Liquid Chillers, Int. J. Refrig, 24, 612-627.
  • 18. Lee, T.S., 2010. Second-law Analysis to Improve the Energy Efficiency of Screw Liquid Chillers, Entropy, 12, 375-389.
  • 19. Wu, W.C., Lee, T.S., Chang, C.H., 2012. Energy and Exergy Analysis for Improving the Energy Performance of Air-cooled Liquid Chillers by Different Condensing-coil Configurations, National Taipei University of Technology, Taipei 10608P. Taiwan.
  • 20. Altundağ, A., Gedik, E., Ergün, A., Arslan, K., Ekiciler, R., 2015. Exergy Analysis of Heating Line of Surgery Air Handling Unit in a Hospital. Karabük Üniversitesi, Electronic Journal of Machine Technologies, 12(4),103-114.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ