Experimental Investigation of the Flow Characteristics around a NACA0012 Airfoil Subjected to Stall and Post-Stall Conditions

The flow structure and turbulent characteristics of an airfoil at various Reynolds numbers (Rec = 1.5×104, 2.0×104, 2.5×104) have been investigated considering two angles of attack (α = 10o and α = 12o). PIV measurements have been performed and time-averaged and instantaneous results were presented utilizingvorticity, profiles of streamwise velocity, Reynolds shear stress, and turbulent kinetic energy distributions. The results have shown that both the Rec and α significantly affect the flow characteristics around the airfoil. Furthermore, the change in flow characteristics between the stall and post-stall angles was elaborated and compared with each other, as being in good agreement with the available literature.The turbulent fluctuations in the airfoil wake, as well as in the suction side, were obtained to be more intense at post-stall angle compared with the stall condition. Besides, due to the earlier flow separation, post-stall condition presented a larger wake and the shedding of vortices formed by the leading and trailing edges of the airfoil.

Stol ve Stol Ötesi Durumlara Maruz Kalan Bir NACA0012 Kanat Profili Etrafındaki Akış Karakteristiklerinin Deneysel İncelenmesi

Bir kanat profilinin akış yapısı ve türbülans özellikleri, çeşitli Reynolds sayılarındaki (Rec =1,5×104, 2,0×104, 2,5×104) iki atak açısı (α=10o ve α=12o) göz önüne alınarak incelenmiştir. PIV ölçümleri gerçekleştirilmiş ve zaman ortalamalı ve anlık girdap, akış hızı profilleri, Reynolds kayma gerilmesi ve türbülans kinetik enerji dağılımları kullanılarak sonuçlar sunulmuştur. Sonuçlar, hem Reynolds sayısının hem de hücum açısının, kanat profili etrafındaki özelliklerini önemli ölçüde etkilediğini göstermiştir. Stol ve stol ötesi açılarda akış karakteristiklerindeki değişiklik, mevcut literatürle iyi bir uyum içinde detaylandırılmış ve birbirleriyle karşılaştırılmıştır. Hem kanat profili art izinde hem de emme yüzeyinde oluşan türbülans çalkantılarının, stol ötesi açıda daha şiddetli olduğu elde edilmiştir. Bunun yanında, daha erken akış ayrılması sebebiyle stol ötesi durum, kanat profilinin hücum ve firar kenarlarından doğan girdapların kopması ile birlikte daha geniş bir art izi yapısı göstermiştir.

___

1. Almutairi, J., Jones, L., Sandham, N., 2010. Intermittent Bursting of a Laminar Separation Bubble on an Airfoil. AIAA Journal 48 (2), 414–426.

2. Bragg, M., Heinrich, D., Balow, F., Zaman, K., 1996. Flow Oscillation Over an Airfoil Near Stall. AIAA Journal 34 (1), 199–201.

3. Rodriguez, I., Lehmkuhl, O., Borrell, R., Oliva, A., 2013. Direct Numerical Simulation of a NACA0012 in Full Stall. International Journal of Heat and Fluid Flow. 43, 194- 203.

4. McCullough, G.B., Gault, D.E., 1951. Examples of Three Representative Types of Airfoil Section Stall at Low Speeds. NACA TN No: 2502.

5. Lissaman, P.B.S., 1983. Low-Reynolds Number Airfoils. Annual Review of Fluid Mechanics, 15, 223-39.

6. Mueller, T.J., DeLaurier, J.D., 2003. Aerodynamics of Small Vehicles. Annu. Rev. Fluid. Mech. 35(1), 89–111.

7. Wang, S., Zhou, Y., Alam, M.M. Yang, H., 2014. Turbulent Intensity and Reynolds Number Effects on an Airfoil at Low Reynolds Numbers, Physics of Fluids, 26, 115107.

8. Huang, R.F., Lin, C.H., 1995. Vortex Shedding and Shear-layer Instability of Wing at Low-Reynolds Numbers. AIAA Journal 33 (8), 1398-1403.

9. Cleaver, D.J., Wang, Z., Gursul, I., Visbal, M., R., 2011. Lift Enhancement by Means of Small-amplitude Airfoil Oscillations at Low Reynolds Numbers. AIAA J. 49(9), 2018–2033.

10. Yasuda, T., Fukui, K., Matsuo, K., Minagawa, H., Kurimoto, R., 2019. Effect of the Reynolds Number on the Performance of a NACA0012 Wing with Leading Edge Protuberance at Low Reynolds Numbers. Flow, Turbulence and Combustion. 102, 435-455.

11. Boutilier, M.S.H., Yarusevych, S., 2012. Effects of end Plates and Blockage on Low-Reynolds-number Flows Over Airfoils. AIAAJ. 50, 1547.

12. Cengel, Y.A., Cimbala, J.M., 2008. Fluid Mechanics: Fundamentals and Applications (1st Edition), McGraw Hill, 49.

13. Westerweel, J., Scarano, F., 2005. Universal Outlier Detection for PIV Data. Experiments in Fluids, 39, 1096–1100.

14. Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T., Kompenhans, J., 2018. PIV Uncertainty and Measurement Accuracy. In: Particle Image Velocimetry. Springer, Cham.

15. Landreth, C.C., Adrian, R.J., 1990a. Impingement of a Low Reynolds Number Turbulent Circular Jet onto a Flat Plate at Normal Incidence. Experiments in Fluids, 9, 74-84.

16. Sheng, J., Meng, H., Fox, R.O., 2000. A large eddy PIV method for turbulence dissipationrate estimation. Chem. Eng. Sci., 55, 4423-4434.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ