Determination of optimum geometrical parameters of compact heat exchangers using computational fluid dynamics

Bu çalışmada; bir kompakt ısı eşanjörünün çeşitli geometrik parametrelerinin, ısı eşanjörünün ısı transferi ve basınç kaybı gibi performans değerlerine karşı etkileri araştırılmış ve laminar akım koşullarında optimum geometrik parametreleri, Hesaplı Akışkanlar Dinamiği yöntemiyle belirlenmiştir. Çalışmanın sonucunda, araştırılan Reynolds sayısı aralığında, optimum parametreler; boyutsuz plaka açıklığı $F_s$ = 0.233, saptırmalı boru dizilişi düzenine sahip, dalgalı plakalı ve dört-borulu konfigürasyon olarak belirlenmiştir. Bu nümerik çalışmanın sonuçları, deneysel çalışmalarla karşılaştırılmış ve uyumlu sonuçlar elde edilmiştir.

Kompakt ısı aşanjörlerinde optimum geometrik parametrelerin hesaplı akışkanlar dinamiği kullanılarak belirlenmesi

Present study provides information on determination of an optimum •geometrical parameters on compact heat exchangers using Computational Fluid Dynamics. Various geometrical parameters are tested in order to determine optimum dimensions in terms of heat transfer and pressure drop performance of the heat exchanger for the plate fin and tube heat exchangers having plain fin configuration operating under laminar flow condition. It is decided that the optimum value for the non-dimensional fin spacing is $F_s$ =0.233 for the present Reynolds numbers and fin spacing values, In addition, four cylinder configuration of staggered tube layout and wavy fin configuration present good results in terms of heat transfer and pressure drop performance. The validity of the present numerical study is tested against experimental data and it is shown that the results are in good agreement with the experimental data.

___

  • 1. Kakac,S., Liu,H., “Heat Exchangers, Selection, Rating, and Thermal Design”, CRC Press, 432 p. 1997.
  • 2. Seshimo,Y., Fujii,M., “An Experimental Study on the Performance of Plate fin and Tube Heat Exchangers at Low Reynolds Numbers”, ASME/JSME Thermal Engineering Proceedings, (4): 449-454, 1991.
  • 3. Jang,J.Y., Wu,M.C., Chang,W.J., “Numerical and Experimental Studies of Three-Dimensional Plate Fin and Tube Heat Exchangers”, International Journal of Heat and Mass Transfer, 39(14): 3057-3066, 1996.
  • 4. Goldstein,L.G., Sparrow,E.M., “Experiments on the Transfer Characteristics of a Corrugated Fin and Tube Heat Exchanger Configuration”, J. Heat Transfer, Trans ASME, February: 26-32, 1976.
  • 5. Madi,M.A., Johns,R.A., Heikal,M.R., “Performance Characteristics Correlation for Round Tube and Plate Finned Heat Exchangers”, Int. J. Refrigeration, 21(7):507- 517, 1998.
  • 6. Wang,C.C., Tsai,Y.M., Lu,D.C., “Comprehensive Study of Convex-Louver and Wavy Fin- and Tube Heat Exchangers”, Journal of Thermophysics and Heat transfer, 12(3): 423-430, 1998.
  • 7. Kuppan,T., “Heat Exchanger Design Handbook, Marcell Dekker”, Inc., Basel, ISBN: 0-8247-9787-6, 1119 p, New York, 2000.
  • 8. Saboya,F.E.M., Sparrow,E.M., “Local and Average Transfer Coefficients for One Row Plate Fin and Tube Heat Exchanger Configurations”, J. Heat Transfer, Trans. ASME., August: 265-27,. 1974.
  • 9. Kim,J.Y., Song,T.H., “Microscopic Phenomena and Macroscopic Evaluation of Heat Transfer From Plate Fins/Circular tube Assembly Using Naphthalene Sublimation Technique”, International Journal of Heat and Mass Transfer, 45: 3397-3404, 2002.
  • 10. Wang,C.C., Fu,W.L., Chang,C.T., “Heat Transfer and Friction Characteristics of Typical Wavy Fin- and- tube Heat Exchangers”, Experimental Thermal and Fluid Science, 14: 174-186, 1997.
  • 11. Wang,C.C., Tsai,Y.M., Lu,D.C., “Comprehensive Study of Convex-Louver and Wavy Fin- and Tube Heat Exchangers”, Journal of Thermophysics and Heat transfer, 12(3): 423-430, 1998.
  • 12. Wang,C.C., Chang,J.Y., Chiou,N.F., “Effects of Waffle Height on the Air Side Performance of Wavy fin- and- Tube Heat Exchangers”, Heat Transfer Engineering, 20(3): 45-56, 1999.
  • 13. Yan,W.M., Sheen,P.J., “Heat Transfer and Friction Characteristics of Fin and Tube Heat Exchangers”, Int. J. Heat Mass Transfer, 43: 1651-1659, 2000.
  • 14. Lozza,G., Merlo,U., “An Experimental Investigation of Heat Transfer and Friction Losses of Interrupted and Wavy Fins for Fin-and-Tube Heat Exchangers”, Int. J. Refrigeration, 24: 409-416, 2001.
  • 15. Tsai,S.F., Sheu,T.W.H., “Some Physical Insights into a Two- Row Finned Tube Heat Transfer”, Computers and Fluids, 27(1): 29-46, 1998.
  • 16. Mendez,R.R., Sen,M., Yang,K.T., McClain,R., “Effect of Fin Spacing on Convection in a Plate Fin and Tube Heat Exchanger”, Int. J. Heat Mass Transfer, 43: 39-51, 2000.
  • 17. Wung,T.S., Chen,C.J., “Finite Analytic Solution of Convective Heat Transfer for Tube Arrays in Crossflow: Part I- Flow Field Analysis”, Journal of Heat Transfer, August, 111: 633-640, 1989.
  • 18. Kundu,D., Skeikh,A.H., Lou,D.Y.S., “Heat Transfer Predictions in Cross Flow Over Cylinders Between Two Parallel Plates”, Numerical Heat Transfer, Part A, 19:361-377, 1991a.
  • 19. Kundu,D., Skeikh,A.H., Lou,D.Y.S., “Pressure and Heat Transfer in Crossflow Over Cylinders Between Two Parallel Plates”, Numerical Heat Transfer, Part A, 19:345-360, 1991b
  • 20. Barsamian,H.R., Hassan,Y.A., “Large Eddy Simulation of Turbulent Crossflow in tube Bundles”, Nuclear Engineering and Design, 172:103-122, 1997.
  • 21. Shah,R.K., Heikal,M.R., Thonon,B., “Advances in Numerical Analysis of Fluid Flow, Heat Transfer, and Flow Friction Characteristics of Compact Heat Exchanger Surfaces”, Proceedings. Int. Symposium on Fluid Flow and Heat Transfer, 68-87, Ankara, Turkey, 1997.
  • 22. Rocha,L.A.O., Saboya,F.E.M., Vargas,J.V.C., “A Comparative Study of Elliptical and Circular Sections in One- and Two- Row Tubes and Plate Fin Heat Exchanger”, International Journal of Heat and Fluid Flow, 18: 247-252, 1997.