Design of the Dual-Wideband Monopole Antenna for UMTS, WLAN and WiMAX Applications by using a Novel Hybrid Optimization Algorithm

Bu çalışmada, UMTS (universal mobile telecommunications system), WLAN (wireless local area network) ve WiMAX (worldwide interoperability for microwave access) uygulamaları için bir kompakt çift-genişbantlı monopol anten önerilmiştir. UMTS (1,9-2,1 GHz), WLAN (2,4/5,2/5,8 GHz) ve WiMAX (2,5/3,5/5,5 GHz) uygulamalarında arzu edilen çalışma bantlarını elde etmek amacıyla, momentler metoduna dayalı HyperLynx® 3D elektromanyetik platformundan ve yeni bir melez optimizasyon algoritmasından (MOA) oluşan entegre yeni bir teknik kullanılmıştır. MOA, farksal gelişim (FG) algoritmasının güçlü mutasyon ve çaprazlama operatörlerinin, yapay arı kolonisi (YAK) algoritmasının izleyici arı fazına entegre edilmesi ile geliştirilmiştir. Modellenen anten iki ayrı çalışma bandı üretmiştir. Birinci banda ait genişlik, 1,44 GHz'den 3,92 GHz'e kadar toplam 2,48 Ghz'dir ve ikinci çalışma bandı ise 4,92 GHz'den 6,50 GHz'e kadar toplam 1,58 GHz'lik bir genişliğe sahiptir. Önerilen anten tasarımdan sonra benzetimleri gerçekleştirilmiş daha sonra, 4,4 dielektrik sabitli ve 0,02 tanjant kayıplı 42×49,2×1,6 mm3 boyutlarında FR4 alttaş malzemesi kullanılarak üretilmiştir. Empedans eşlemesi açısından, daha önce literatürde yayınlanan çift ve üç bantlı antenlerle karşılaştırıldığında, önerilen antenin çok daha iyi bir performansa sahip olduğu görülmüştür. Bununla birlikte, çalışma bandları içinde tarsarlanan anten, çok iyi bir kazançla birlikte yönsüz bir radyasyon desenine sahiptir

Yeni BirMelez Optimizasyon Algoritması Kullanarak UMTS, WLAN ve WiMAX Uygulamaları için Çift-Geniş Bantlı Monopole Anten Tasarımı

In this study, a compact dual-wideband monopole antenna is proposed for the universal mobile telecommunications system (UMTS), wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. In order to obtain the desired operating frequency bands, UMTS (1.9-2.1 GHz), WLAN (2.4/5.2/5.8 GHz) and WiMAX (2.5/3.5/5.5 GHz), a novel integration technique consisting of the HyperLynx 3D electromagnetic (EM) platform based on the method of moments (MoM) and a new hybrid optimization algorithm (HOA) is utilized. The HOA is developed by integrating powerful mutation and crossover strategies of differential evolution (DE) algorithm with the onlooker bee phase of the artificial bee colony (ABC) algorithm. The monopole antenna is capable of producing two distinct operating bands. First impedance bandwidth of 2.48 GHz is from 1.44 to 3.92 GHz and second band having the bandwidth of 1.58 GHz is between 4.92 and 6.50 GHz. The proposed antenna has been designed, simulated and fabricated on 42×49.2×1.6 mm3 FR4 substrate with relative permittivity 4.4 and loss tangent 0.02. The better performance in terms of impedance matching is achieved, as compared to the double-or triple-band antennas previously published in the literature. In addition, the design antenna performs the omnidirectional radiation patterns with a good gain performance in the operating bands.

___

1.Liu,W.C., Wu,C.M., Chu,N.C., 2010.A Compact CPW-fed Slotted Patch Antenna for Dual-band Operation, IEEE Antennas Wireless Propag Lett.,9, 110-113.

2.Huang,C.Y.,Yu,E.Z., 2011.A Slot-monopole Antenna for Dual-band WLAN Applications, IEEE Antennas Wireless Propag Lett.,10, 500-502.

3.Pei,J., Wang,A., Gao,S., Leng,W., 2011.Miniaturized Triple-band Antenna with a Defected Ground Plane for WLAN/WiMAX Applications, IEEE Antennas Wireless Propag Lett.,10, 298-302.

4.Liu,W.Ch.,Wu,Ch,M., Dai,Y., 2011.Design of Triple-frequency Microstrip-fed Monopole Antenna using Defected Ground Structure, IEEE Trans Antennas Propag, 10, 2457-2463.

5.Lu,J.H., Huang,B.J., 2010. Planar Multi-band Monopole Antenna with L-shaped Parasitic Strip for WiMAX Application, Electron Lett.,47, 671-672.

6.Xu,P., Yan,Z.H., Wang,C., 2011. Multi-band Modified Fork-shaped Monopole Antenna with Dual L-shaped Parasitic Plane, Electron Lett.,47, 364-365.

7.Liu,P., Zou,Y., Xie,B., Liu,X., Sun,B., 2012. Compact CPW-fed Tri-band Printed Antenna with Meandering Split-ring Slot for WLAN/WiMAX Applications, IEEE Antennas Wireless Propag Lett.,11, 1242-1244.

8.Xu,Y., Jiao,Y.C., Luan,Y.C., 2012.Compact CPW-fed Printed Monopole Antenna with Triple-band Characteristics for WLAN/WiMAX Applications, Electron Lett.,48, 1519-1520.

9.Iddi,H.U., Kamaruddin,M.R., Rahman,T.A., Abdulrahman,A.Y., Khalily,M., Jamlos,M.F., 2013.Triple-band CPW-fed Planar Monopole Antenna for WLAN/WiMAX Application, Microwave Opt Technol Lett.,55, 2209-2214.

10.Pouyanfar,N., 2014.Broadband CPW-fed Square Slot Antenna Loaded with Parasitic Element for WLAN/WiMAX Applications, Microwave Opt Technol Lett.,56, 338-340.

11.Yoon,J.H.,Kil,G.S.,2012.Compact Monopole Antenna with Two Strips and a Rectangular-slit Ground Plane for Dual-band WLAN/WiMAX Application, Microwave Opt Technol Lett.,54, 1559-1566.

12.Kaur,J.,Khanna,R., 2014.Development of Dual-band Microstrip Patch Antenna for W L AN / M I M O /W i M AX / AM S AT / W AV EApplications, Microwave Opt Technol Lett.,56, 988-993.

13.Huang,H.F.,Zhang,S.F., 2014.Compact Multiband Monopole Antenna for WLAN/WiMAX Applications, Microwave Opt Technol Lett.,56, 1809-1812.

14.Malekpoor,H.,Jam,S., 2013.Design of Multi-band Asymmetric Patch Antenna for Wireless Applications, Microwave Opt Technol Lett.,vol. 55, pp. 730-734.

15.Hu,W., Yin,Y.Z., Yang,X., Fei,P., 2013.Compact Multi Resonator-loaded Planar Antenna for Multiband Operation, IEEE Trans. Antennas Propag, 61, 2838-2841.

16.Yuan,Z.X., Yin,Y.Z., Ding,Y., Li,B., Xie,J.J., 2012.Multiband Printed and Double-sided Dipole Antenna for WLAN/WiMAX Applications, Microwave Opt Technol Lett.,54, 1019-1022.

17.Hu,W., Yin,Y.Z., Fei,P., Yang,X., 2011.Compact Triband Square-slot Antenna with Symmetrical L-strips for WLAN/WiMAX Applications, IEEE Antennas Wireless Propag Lett.,10, 462-465.

18.Li,X., Shi,X.W., Hu,W., Fei,P., Yu,J.F., 2013.Compact Triband ACS-fed Monopole Antenna Employing Open-ended Slots for Wireless Communication, IEEE Antennas Wireless Propag Lett.,12, 388-391.

19.Jin,N.B.,Rahmat-Samii,Y., 2005.Parallel Particle Swarm Optimization and Finite Difference Time Domain Algorithm for Multiband and Wideband Patch Antenna Designs, IEEE Trans Antennas Propag, 53, 3459-3468.

20.Yilmaz,A.E.,Kuzuoglu,M., 2007.Calculation of Optimized Parameters of Rectangular Microstrip Patch Antenna Using Particle Swarm Optimization, Microwave Opt Technol Lett., 49, 2905-2907.

21.Namkung,J., Hines,E.L., Green,R.J., Leeson,M.S., 2007.Probe-feed Microstip Antenna Feed Point Optimization using a Genetic Algorithm and the Method of Moments, Microwave Opt Technol Lett., 49, 325-329.

22.Zhang,L., Cui,Z., Jiao,Y.C.,Zhang,F.S., 2009.Broadband Patch Antenna Design using Differential Evolution Algorithm, Microwave Opt Technol Lett.,51, 1692-1695.

23.Toktas,A.,Bicer,M.B., Kayabasi,A., Ustun,D., Akdagli,A.,Kurt,K., 2015.A Novel and Simple Expression to Accurately Calculate the Resonant Frequency of Annular-ring Microstrip Antennas, International Journal of Microwave and Wireless Technologies, 7, no. 6, 727-733.

24.Toktas,A.,Akdagli,A.,2012.Computation of Resonant Frequency of E-Shaped Compact Microstrip Antennas, Journal of the Faculty of Engineering and Architecture of Gazi University, 27, 847-854.

25.Toktas,A.,Bicer,M.B., Akdagli,A.,Kayabasi,A.,2011.A Simple Formulas for Calculating Resonant Frequencies of C and H Shaped Compact Microstrip Antennas Obtained by Using Artificial Bee Colony Algorithm, Journal of Electromagnetic Waves and Applications, 25, 1718-1729.

26.Toktas,A.,Akdagli,A., 2010.A Novel Expression in Calculating Resonant Frequency of H-Shaped Compact Microstrip Antennas Obtained by using Artificial Bee Colony Algorithm, Journal of Electromagnetic Waves and Applications, 24, 2049-2061.

27.Karaboga,D., 2010.Artificial Bee Colony Algorithm, Scholarpedia 5 (3) 6915 from www.scholarpedia.org/article/Artificial.bee.colony.algorithm.

28.Karaboga,D., 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.

29.Karaboga,D., Gorkemli,B., Ozturk C.,Karaboga, N.,2012. A Comprehensive Survey: Artificial Bee Colony (ABC) Algorithm and Applications, Artif.Intell. Rev. (ex. 15.05.2016)from http://dx.doi.org/10.1007/s10462-012-9328-0.

30.Storn,R., Price, K., 1997.Differential Evolution-a Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces, J Global Optim., 1, 1341-359.

31.HyperLynx®3D EM. Version 15. Mentor Graphics Corporation, Wilsonville (OR).

32.Harrington,R.F., 1993.Field Computation by Moment Methods, Piscataway (NJ): IEEE Press.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ