BN İlavesinin Sıkıştırma Döküm Yöntemi ile Üretilen B4C/Al Hibrit Kompozitlerin Mekanik Özellikleri Üzerine Etkileri

Yürütülen çalışma kapsamında, bor nitrür (BN) ilavesinin bor karbür (B4C) ile güçlendirilmiş alüminyum (Al) kompozitlerinin mekanik özellikleri üzerindeki etkileri incelenmiştir. Ağırlıkça %5 B4C katkılı olarak hazırlanan alüminyum matriks kompozit malzemelere ağırlıkça %3, %5 ve %10 BN ilave edilerek ve 75 MPa basınç altında sıkıştırma döküm yöntemi ile döküm işlemi gerçekleştirilerek BN-B4C/Al hibrit kompozit malzeme üretilmiştir. Kontrol ve karşılaştırma amacıyla, BN ve B4C ilavesi olmaksızın alüminyumdan elde edilen numuneler kullanılmış; BN ve B4C ilavesinin üretilen malzemelerin yoğunlukları üzerine etkileri ve ortalama talaş uzunlukları incelenmiştir. BN katkısının mekanik özellikler üzerindeki etkisini belirlemek amacıyla, sertlik ölçümleri gerçekleştirilmiş; malzemelerin akma dayanımları, çekme dayanımları ve yüzde uzama miktarları çekme testi yardımıyla belirlenmiş ve karşılaştırılmıştır

Effect of BN Addition on the Mechanical Properties of B4C/Al Hybrid Composites Produced via Squeeze Casting Method

n this study, effects of boron nitride (BN) addition on the mechanical properties of boron carbide reinforced (B4C) aluminum (Al) composites were investigated. 3, 5 and 10 wt. %BN were added to Al matrix composites reinforced with 5% B4C and melts were cast by squeeze casting technique under 75 MPa casting pressure to produce BN-B4C/Al hybrid composites. Control samples were prepared without any BN and B4C addition for comparison purposes and effect of BN and B4C addition on the density and chip lengths of the produced materials were obtained. In order to determine the effect of BN addition on the mechanical properties hardness measurements were conducted and the yield and ultimate tensile strengths and per cent elongation values were determined by tensile testing and results were compared

___

  • 1. Kainer, K.U., 2006. Metal Matrix Composites. Custom-made Materials for Automotive and Aerospace Engineering. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim.
  • 2. Kim, Y.H., Lee, S., Kim, N.J., 1992. Fracture Mechanisms of a 2124 Aluminum Matrix Composite Reinforced with SiC Whiskers. Metallurgical and Materials Transactions A, 23(9), 2589-2596.
  • 3. Song, W.Q., Krauklis, P., Mauritz, A.P., Bandyopadhyay, S., 1995. The Effect of Thermal Aging on the Abrasive Behaviour of Age-hardening 2014 Al/SiC and 6061 Al/SiC Composites. Wear, 185(1-2), 125-130.
  • 4. Chawla, N., Chawla, K.K., 2006. Metal Matrix Composites, Springer, New York.
  • 5. Koli, D.K., Agnihotri, G., Purohit, R., 2015. Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields. Materials Today: Proceedings, 2(4-5), 3032-3041.
  • 6. Surappa, M.K., 2003. Aluminium Matrix Composites: Challenges and Opportunities. Sadhana, 28(1-2), 319-334.
  • 7. Ramnath, V., Elanchezhian, C., Annamalai, R.M., Aravind, S., Ananda Atreya, T.S., Vignesh, V., Subramanian, C., 2014. Aluminium Metal Matrix Composites - A Review. Reviews on Advanced Materials Science, 38(1), 55-60.
  • 8. Macke, A., Schultz B.F., Rohatgi, P., 2012. Metal Matrix Composites Offer the Automotive Industry an Opportunity to Reduce Vehicle Weight, Improve Performance. Advanced Materials and Processes, 170(3), 19-23.
  • 9. European Aluminium, 2020. https://www. european-aluminium.eu/about-aluminium/, 09 Mayıs 2020.
  • 10. Pandey, A.B., 1992. Metallic Matrices. In: Miracle, D.B., Donaldson, L. (eds), ASM Handbook Vol. 21. ASM International, Metals Park, A.B.D., 396-402.
  • 11. Wang, Y., Lei, K., Ruan, Y., Dong, W., 2016. Microstructure and Wear Resistance of cBN/Ni–Cr–Ti Composites Prepared by Spark Plasma Sintering, International Journal of Refractory Metals and Hard Materials, 54, 98-103.
  • 12. Harichandran, R., Selvakumar, N., 2016. Effect of Nano/micro B4C Particles on the Mechanical Properties of Aluminium Metal Matrix Composites Fabricated by Ultrasonic Cavitation-Assisted Solidification Process. Archives of Civil and Mechanical Engineering, 16(1), 147-158.
  • 13. Kim, S.-B. Kim, Koss, D.A., Gerard, D.A., 2000. High Cycle Fatigue of Squeeze Cast Al/SiCw Composites. Materials Science and Engineering: A, 277(1-2), 123-133.
  • 14. Ozben, T., Kilickap, E., Cakır, O., 2008. Investigation of Mechanical and Machinability Properties of SiC Particle Reinforced AlMMC. Journal of Materials Processing Technology, 198(1-3), 220-225.
  • 15.Chen, K., Hua, Y., Xu, C., Zhang, Q., Qi, C., Jie, Y., 2015. Preparation of TiC/SiC Composites from Ti-Enriched Slag by an Electrochemical Process in Molten Salts, Ceramics International, 41(9A), 11428-11435.
  • 16.Johny James, S., Venkatesan, K., Kuppan, P., Ramanujam, R., 2014. Hybrid Aluminium Metal Matrix Composite Reinforced with SiC and TiB2. Procedia Engineering, 97, 1018-1026.
  • 17. Saravanan, L., Senthilvelan, T., 2015. Investigations on the hot Workability Characteristics and Deformation Mechanisms of Aluminium Alloy - Al2O3 Nanocomposite. Materials & Design, 79, 6-14.
  • 18. Sharma, P., Sharma, S., Khanduja, D., 2015. Production and some Properties of Si3N4 Reinforced Aluminium Alloy Composites. Journal of Asian Ceramic Societies, 3(3), 352-359.
  • 19. Takahashi, S., Imai, Y., Kan, A., Hotta, Y., Ogawa, H., 2015. Improvements in the Temperature-Dependent Properties of Dielectric Composites by Utilizing MgO Whiskers as the Dielectric Filler in an iPP Matrix. Journal of Alloys and Compounds, 640, 428-432.
  • 20.Baradeswaran, A., Vettivel, S.C., Elaya Perumal, A., Selvakumar, N., Franklin Issac, R., 2014. Experimental Investigation on Mechanical Behaviour, Modelling and Optimization of Wear Parameters of B4C and Graphite Reinforced Aluminium Hybrid Composites. Materials & Design, 63, 620-632.
  • 21. Dieringa, H., Kainer, K.U., 2006. Particles, Fibers and Short Fibers for the Reinforcement of Metal Materials. In: Kainer, K.U. (ed), Metal Matrix Composites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 55-75.
  • 22. Timofeeva, E.V., Gavrilov, A.N., McCloskey, J.M., Tolmachev, Y.V., Sprunt, S., Lopatina, L.M., Selinger, J.V., 2007. Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory. Physical Review E, 76(6), 061203/1-16.
  • 23. Huntz, A.M., Maréchal, L., Lesage, B., Molins, R., 2006. Thermal Expansion Coefficient of Alumina Films Developed by Oxidation of a FeCrAl Alloy Determined by a Deflection Technique. Applied Surface Science, 252(22), 7781-7787.
  • 24. Garg, H.K., Verma, K., Manna, A., Kumar, R., 2012. Hybrid Metal Matrix Composites and Further Improvement in Their MachinabilityA Review. International Journal of Latest Research in Science and Technology, 1(1), 36-44.
  • 25. Pandi, G., Muthusamy, S., 2012. A Review on Machining and Tribological Behaviors of Aluminium Hybrid Composites, Procedia Engineering, 38, 1399-1408.
  • 26. Tjong, S.C., Lau, K.C., Wu, S.Q., 1999. Wear of Al-based Hybrid Composites Containing BN and SiC Particulates. Metallurgical and Materials Transactions A, 30(9), 2551-2555.
  • 27.Ipekoglu, M., Nekouyan, A., Albayrak, O., Altintas, S., 2017. Mechanical Characterization of B4C Reinforced Aluminum Matrix Composites Produced by Squeeze Casting. Journal of Materials Research, 32(3), 599-605.
  • 28. Kashyap, K.T., Ramachandra, C., Dutta, C., Chatterji, B., 2000. Role of Work Hardening Characteristics of Matrix Alloys in the Strengthening of Metal Matrix Composites, Bulletin of Materials Science, 23(1), 47-49.
  • 29.Bodunrin, M.O., Alaneme, K.K., Chown, L.H., 2015. Aluminium Matrix Hybrid Composites: A Review of Reinforcement Philosophies; Mechanical, Corrosion and Tribological Characteristics. Journal of Materials Research and Technology, 4(4), 434-445
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ