Yanıt Yüzey Metodu Analizi: Alkali Elektroliz ile Hidrojen Gazı Üretimi

Bu çalışmada alkali elektroliz hücresi ile hidrojen gazı üretimi için laboratuvar ölçekli, iki elektrotlu bir sistem kurulmuştur. Anot olarak soy metal olan platin kullanılırken, katot olarak nikel köpük elektrotlar galvanostatik yöntemle nikel-bakır-molibden (NiCuMo) ile modifiye edilmiştir. Sisteme faklı uygulama potansiyelleri (2,4 V; 2,7 V ve 3 V) uygulanmış ve farklı süreler için elde edilen hidrojen gazı hacimleri belirlenmiştir. Deneysel bulgulara göre 30 dakikalık elektroliz işlemi sonrasında artan uygulama potansiyellerine göre sırasıyla; 77,30; 90,67 ve 105,08 mL hidrojen gazı üretilmiştir. Söz konusu sistemin optimizasyonu için yanıt yüzey metodu analizi (RSM) kullanılmıştır. Sistem etkinlik analizinde elektroliz potansiyeli ve süre değişken olarak seçilerek hidrojen gazı üretim hacmine ve yük miktarına etkileri araştırılmıştır. Hidrojen hacmi ve yük miktarı için tahmini R2 değerleri sırasıyla 0,9956 ve 0,9955 olarak belirlenmiştir. Hidrojen gazı hacim ve yük değerleri için %Hata sırasıyla 2,71 ve 0,5‘dir.

Response Surface Method Analysis: Hydrogen Gas Production by Alkaline Electrolysis

In this study, the laboratory scale, two-electrode system was established for the production of hydrogen gas with an alkaline electrolysis cell. The noble metal platinum was utulized as the anode and the nickel foam electrodes which were modified with nickel-copper-molybdenum (NiCuMo) by galvanostatic method, was used as the cathode. Different operation potentials (2.4 V; 2.7 V and 3 V) were applied to the system and the hydrogen gas volumes obtained for variable duration times were determined. According to the results of the study, after 30 minutes of electrolysis, 77.30, 90.67, and 105.08 mL of hydrogen gas were produced, respectively, based on the rising application potentials. The surface response method analysis (RSM) was used for the optimization of the system. In the system efficiency analysis, the electrolysis potential and time were chosen as variables and their effects on the hydrogen gas production volume and the amount of charge were investigated. The R2 values of hydrogen volume and charge amount were 0.9956 and 0.9955, respectively. The error% was determined as 2.71 and 0.5 for the hydrogen gas volume and charge values, respectively.

___

  • 1. Kumar, S.S., Lim, H., 2022. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Reports, 8, 13793-13813.
  • 2. Mohammed, H.J., Ali, N.A., 2019. Fabricating and Study Effect of the Concentrations Electrolyte for An Alkaline Electrolysis Cell. The 7th International Conference on Applied Science and Technology, (ICAST'2019), 27-28 March 2019, Katbala City, Iraq, 30002-30006.
  • 3. Batool, M., Hameed, A., Nadeem, M.A., 2023. Recent Developments on Iron and Nickel-based Transition Metal Nitrides for Overall Water Splitting: A Critical Review. Coordination Chemistry Reviews, 480, 215029.
  • 4. Dezhdar, A., Assareh, E., Agarwal, N., Bedakhanian, A., Keykhah, S., Fard, G.Y., Zadsar, N., Aghajari, M., Lee, M., 2023. Transient Optimization of A New Solar-wind Multi-generation System for Hydrogen Production, Desalination, Clean Electricity, Heating, Cooling, and Energy Storage using TRNSYS. Renewable Energy 208, 512-537.
  • 5. Dincer, I., 2023. Hydrogen 1.0: A new Age. International Journal of Hydrogen Energy.
  • 6. Wang, Y., Lu, Z., Chen, M., Liang, D., Wang, J., 2022. Hydrogen Production from Catalytic Steam Reforming of Toluene Over Trace of Fe and Mn Doping Ni/Attapulgite. Journal of Analytical and Applied Pyrolysis, 165, 105584.
  • 7. Novotny, V., 2023. Blue Hydrogen can be A Source of Green Energy in the Period of Decarbonization. International Journal of Hydrogen Energy, 48(20), 7202-7218.
  • 8. Gopinath, M., Marimuthu, R., 2022. A Review on Solar Energy-based Indirect Water-splitting methods for Hydrogen Generation. International Journal of Hydrogen Energy, 47(89), 37742-37759.
  • 9. Monga, D., Shetti, N.P., Basu, S., Kakarla, R.R., 2023. Recent Advances in Various Processes for Clean and Sustainable Hydrogen Production. Nano-Structures & Nano-Objects, 33, 100948.
  • 10. Dokhani, S., Assadi, M., Pollet, B.G., 2023. Techno-economic Assessment of Hydrogen Production from Seawater. International Journal of Hydrogen Energy, 48(26), 9592-9608.
  • 11. Omarov, S.O., Martinson, K.D., Matveyeva, A.N., Chebanenko, M.I., Nevedomskiy, V.N., Popkov, V.I., 2022. Renewable Hydrogen Production via Glycerol Steam Reforming over Ni/CeO2 Catalysts Obtained by Solution Combustion Method: The Effect of Ni Loading. Fuel Processing Technology. 236, 107429.
  • 12. Shejale, A.D., Yadav, G.D., 2022. Steam reforming of bio-alcohols over Ni-M (Cu, Co, Pt)/MCF-S (MgO, La2O3, CeO2) for Renewable and Selective Hydrogen Production: Synergistic Effect of MCF Silica and Basic Oxides on Activity and Stability Profiles. Catalysis Today, In press.
  • 13. Yuvaraj, A.L., Santhanaraj, D., 2013. A Systematic Study on Electrolytic Production of Hydrogen Gas by using Graphite as Electrode. Materials Research, 17(1), 83-87.
  • 14. Okonkwo, P.C., Barhoumi, E.M., Mansir, I.B., Emori, W., Bhowmik, H., 2022. Effect of Electrode Material on the Hydrogen Production Using a Low-cost Home-made Alkaline Eectrolyzer. Vacuum, 198, 110878.
  • 15. Yang, J.H., Xu, X., Chen, M., Yang, D., Lu, H., Sun, Y., Shao, C., Song, Q., Zhang, J., Gao, L., Zhang, Y., 2021. Morphology-Controllable Nanocrystal β-Ni(OH)2/NF Designed by Hydrothermal Etching Method as High-Efficiency Electrocatalyst for Overall Water Splitting. Journal of Electroanalytical Chemistry, 882, 115035.
  • 16. Ding, Q., Zou, X., Ke, J., Dong, Y., Cui, Y., Lu, G., Ma, H., 2023. S-scheme 3D/2D NiCo2O4@g-C3N4 Hybridized System for Boosting Hydrogen Production from Water Splitting. Renewable Energy, 203, 677-685.
  • 17. Hao, J., Liu, J., Wu, D., Chen, M., Liang, Y., Wang, Q., Wang, L., Fu, X.Z., Luo, J.L., 2021. In Situ Facile Fabrication of Ni(OH)2 Nanosheet Arrays for Electrocatalytic Co-production of Formate and Hydrogen from Methanol in Alkaline Solution. Applied Catalysis B: Environmental, 281, 119510.
  • 18. Kong, X., Lv, F., Zhang, H., Yu, F., Wang, Y., Yin, L., Huang, J., Feng, Q., 2022. NiO Load K2Fe4O7 Enhanced Photocatalytic Hydrogen Production and Photo-Generated Carrier Behavior. Journal of Alloys and Compounds, 903, 163864.
  • 19. Cai, W., Li, Y., Zheng, Q., Song, M., Ma, P., Fang, W., Song, W., Lai, W., 2023. Hydrogenative Rearrangement of Bioderived Furfurals to Cyclopentanones over Ni/Nb2O5 Catalysts: Promotion Effect of Reducible NbOx and Water. Fuel, 338, 127345.
  • 20. Liu, F., Tang, Y., Zhao, J., Bai, Y., Chen, J., Tian, L., Shah, S.S.A., Bao, S.J., 2022. Carbon Dots-induced Carbon-coated Ni and Mo2N Nanosheets for Efficient Hydrogen Production. Electrochimica Acta, 424, 140671.
  • 21. Liu, S., Li, F., Li, T., Cao, W., 2023. High-Performance ZnIn(2)S(4)/Ni(dmgH)(2) for Photocatalytic Hydrogen Evolution: Ion Exchange Construction, Photocorrosion Mitigation, and Efficiency Enhancement by Photochromic Effect. Journal of Colloid and Interface Science, 642, 100-111.
  • 22. Xu, C., Yang, X., Feng, K., Zhang, M., Yang, L., Yin, S., 2023. Metal-organic Framework Derived Ni/Mo2C/Mo2TiC2Tx@NC as an Efficient Electrocatalyst for Enhanced Hydrogen Production. International Journal of Hydrogen Energy, 48(46), 17553-17564.
  • 23. Krishnan, A., Ajith, A., Krishnan, A.V., Saji, R.E., Syamli, S., Shibli, S.M.A., 2023. Ni-based Electro/Photo-Catalysts in HER - A Review. Surfaces and Interfaces, 36, 102619.
  • 24. Bilgiç, G., Bendeş, E., Öztürk, B., Atasever, S., 2023. Recent Advances in Artificial Neural Network Research for Modeling Hydrogen Production Processes. International Journal of Hydrogen Energy, 48(50), 18947-18977.
  • 25. Ince, A.C., Serincan, M.F., Colpan, C.O., Pasaogullari, U., 2023. A Mini Review on Mathematical Modeling of Co-electrolysis at Cell, Stack and System Levels. Fuel Processing Technology, 244, 107724.
  • 26. Kombe, E.Y., Lang'at, N., Njogu, P., Malessa, R., Weber, C.T., Njoka, F., Krause, U., 2022. Process Modeling and Evaluation of Optimal Operating Conditions for Production of Hydrogen-rich Syngas from Air Gasification of Rice Husks Using Aspen Plus and Response Surface Methodology. Bioresource Technology, 361, 127734.
  • 27. Okolie, J.A., Epelle, E.I., Nanda, S., Castello, D., Dalai, A.K., Kozinski, J.A., 2021. Modeling and Process Optimization of Hydrothermal Gasification for Hydrogen Production: A Comprehensive Review. The Journal of Supercritical Fluids, 173, 105199.
  • 28. Özgür ,C., Mert, M.E., 2022. Prediction and Optimization of the Process of Generating Green Hydrogen by Electrocatalysis: A study Using Response Surface Methodology. Fuel, 330, 125610.
  • 29. Pourali, M., Esfahani, J.A., 2022. Performance Analysis of a Micro-scale Integrated Hydrogen Production System by Analytical Approach, Machine Learning, and Response Surface Methodology. Energy, 255, 124553.
  • 30. Salahi, F., Zarei-Jelyani, F., Farsi, M., Rahimpour, M.R., 2023. Optimization of Hydrogen Production by Steam Methane Reforming over Y-promoted Ni/Al2O3 Catalyst Using Response Surface Methodology. Journal of the Energy Institute, 108, 101208.
  • 31. Lotfi, N., Shahrabi, T., Yaghoubinezhad, Y., Darband, G.B., 2019. Surface Modification of Ni Foam by the Dendrite Ni-Cu Electrode for Hydrogen Evolution Reaction in an Alkaline Solution. Journal of Electroanalytical Chemistry, 848, 113350.
  • 32. Esmailzadeh, S., Shahrabi, T., Yaghoubinezhad, Y., Darband, B.G., 2021. Optimization and Characterization of Pulse Electrodeposited Nickel Selenide Nanostructure as a Bifunctional Electrocatalyst by Response Surface Methodology. International Journal of Hydrogen Energy, 46(36), 18898-18912.
  • 33. Umer, M., Tahir, M., Usman Azam, M., Tasleem, S., Abbas, T., Muhammad A., 2019. Synergistic Effects of Single/Multi-walls Carbon Nanotubes in TiO2 and Process Optimization Using Response Surface Methodology for Photo-catalytic H2 Evolution. Journal of Environmental Chemical Engineering, 7(5), 103361.
  • 34. Rothan, A.Y., Ali, F.F., Issakhov, A., Selim, M.M., Li, Z., 2021. Optimization Analysis of Hydrogen Production Using Ammonia Decomposition. Journal of Molecular Liquids, 335, 116190.
  • 35. Mu, Y., Zheng, X., Yu, H., 2009. Determining Optimum Conditions for Hydrogen Production from Glucose by an Anaerobic Culture Using Response Surface Methodology (RSM). International Journal of Hydrogen Energy, 34, 7959-7963.
  • 36. Adam I.K., Aziz A.R.A., Yusup S., Heikal M., Hagos F., 2016. Optimization of Performance and Emissions of a Diesel Engine Fuelled with Rubber Seed Palm Biodiesel Blends using Response Surface Method. Asian Journal of Applied Sciences, 4(2), 401-421.
  • 37. Ali R.Y., Ali F.F., Issakhov A., Selim M.M., Li Z., 2021. Optimization Analysis of Hydrogen Production Using Ammonia Decomposition. Journal of Molecular Liquids, 335, 116190.
  • 38. Munusamy T.D., Chin S.Y., Khan M.M.R., 2022. Optimization of Process Parameters for Photoreforming of Hydrogen Evolution via Response Surface Methodology (RSM): A Study Using Carbon@exfoliated g–C3N4. Chemical Engineering Research and Design, 177, 513-525.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ