Türkiye'nin Yeşil Ekonomi Girişimi: Hidrojen Enerjisinin Deneysel Bir Değerlendirmesi

Yeşil ekonomi, çevreye zarar vermeyen, sürdürülebilir ekonomik büyümeyi hedefleyen bir kavramdır. Karbon ayak izi azaltılması yeşil ekonomi için önemli bir araçtır. Karbon ayak izi azaltılmasının yeşil ekonomiye katkısı, ekonomik faaliyetlerin çevreye olan etkisini ölçerek, yeşil ekonomi uygulamalarının geliştirilmesine yol göstermesidir. Yeşil ekonomi uygulamaları sayesinde, karbon ayak izi azaltılabilir, çevre dostu üretim ve tüketim alışkanlıkları yaygınlaştırılabilir ve doğal kaynakların daha verimli kullanılması sağlanabilir. Türkiye, karbon ayak izi açısından dünya genelinde orta düzeyde bir konumda yer almaktadır. 2019 yılı itibariyle Türkiye'nin karbon ayak izi, 370 milyon ton karbondioksit (CO2) eşdeğeri olarak hesaplanmıştır. Türkiye'nin en büyük karbon ayak izi kaynakları arasında enerji sektörü, endüstriyel faaliyetler, ulaşım ve tarım sektörleri yer almaktadır. Bu çalışmada, Türkiye’nin yeşil ekonomiye geçiş sürecinde karbon ayak izinin azaltılması için hidrojen gazı üretimin değerlendirilmesi ele alınmıştır. Alkali elektroliz sistemiyle hidrojen gazı üretiminde kullanılan katot elektrot üretimi ve değerlendirilmesi yapılmıştır. Çalışmada literatürde ilk kez üretilen, geçiş metali ihtiva eden, ucuz ve ulaşılabilir katot malzemesi kullanılmıştır. Bu amaçla nikel köpük elektrot yüzeyinden nikel (Ni); demir (Fe) ve molibden (Mo) üçlü kaplama oluşturulmuştur ve farklı potansiyellerde (2,1 V – 3 V), farklı sürelerde (5-30 dak) iki elektrot tekniğiyle hidrojen gazı üretimi sağlanmıştır. Elde edilen sonuçlara göre üretilen elektrotun birim yüzeyi (m2) başına 30 dakika süresince oluşturulan hidrojen gazı yaklaşık 516 L iken alt ısıl değerine (LHV) göre belirlenen enerji değeri ise 5533,2 kJ/kg H2’dir.

Turkey's Green Economy Initiative: An Experimental Evaluation of Hydrogen Energy

Green economy is a concept that aims to achieve sustainable economic growth without harming the environment. Reducing carbon footprint is an important tool for the green economy. The contribution of reducing carbon footprint to the green economy is to measure the impact of economic activities on the environment and guide the development of green economy practices. Through green economy practices, carbon footprint can be reduced, environmentally friendly production and consumption habits can be promoted, and natural resources can be used more efficiently. Turkey is in a moderate position in terms of carbon footprint worldwide. As of 2019, Turkey's carbon footprint was calculated as 370 million tons of carbon dioxide (CO2) equivalent. The energy sector, industrial activities, transportation and agriculture sectors are among the largest sources of carbon footprint in Turkey. In this study, the evaluation of hydrogen gas production for reducing carbon footprint during Turkey's transition to the green economy is discussed. The production and evaluation of the cathode electrode used in hydrogen gas production with the alkaline electrolysis system were conducted. For this purpose, a novel, cheap and accessible cathode material containing transition metal was used for the first time in the literature, which was produced by a triple coating of nickel (Ni), iron (Fe), and molybdenum (Mo) on a nickel foam electrode surface at different potentials (2.1 V - 3 V) and different times (5-30 minutes) with two electrode techniques to produce hydrogen gas. According to the results, the amount of hydrogen gas produced per unit surface area (m2) of the electrode during a 30-minute period was approximately 516 L, and the energy value determined by the Lower Heating Value (LHV) was 5533.2 kJ/kg H2.

___

  • 1. Domaracká, L., Seňová, A., Kowal, D., 2023. Evaluation of Eco-Innovation and Green Economy in EU Countries. Energies, 16(2), 962.
  • 2. Dunlap, A., 2023. The Green Economy As Counterinsurgency, or The Ontological Power Affirming Permanent Ecological Catastrophe. Environmental Science & Policy, 139, 39-50.
  • 3. Geng, Q., Wang, Y., Wang, X., 2023. The Impact of Natural Resource Endowment and Green Finance on Green Economic Efficiency in The Context of COP26. Resources Policy, 80, 103246.
  • 4. Hao, X., Li, Y., Ren, S., Wu, H., Hao, Y., 2023. The Role of Digitalization on Green Economic Growth: Does Industrial Structure Optimization and Green Innovation Matter?. Journal of Environmental Management, 325, 116504.
  • 5. Balayeva, A.H., 2023. Use of Mechanical Braking Energy in Vehicles as Electricity and Hydrogen Energy. International Journal of Hydrogen Energy. In Press. 1-17.
  • 6. Hassan, Q., Abdulateef, A.M., Hafedh, S.A., Al-samari, A., Abdulateef, J., Sameen, A.Z., Salman, H.M., Al-Jiboory, A.K., Wieteska S., Jaszczur, M., 2023. Renewable Energy-To-Green Hydrogen: A Review of Main Resources Routes, Processes and Evaluation. International Journal of Hydrogen Energy, 48(46), 17383-17408.
  • 7. Hassan, Q., Abdulrahman, I.S., Salman, H.M., Olapade, O.T., Jaszczur, M., 2023. Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System. Energies, 16(2), 744.
  • 8. Liu, Y., 2023. How Does Economic Recovery Impact Green Finance and Renewable Energy in Asian Economies. Renewable Energy, 208, 538-545.
  • 9. Raihan, A., 2023. Toward Sustainable and Green Development in Chile: Dynamic Influences of Carbon Emission Reduction Variables. Innovation and Green Development, 2(2), 100038.
  • 10. Raihan, A., Muhtasim, D.A., Farhana, S., Rahman, M., Hasan, M.A.U., Paul, A., Faruk, O., 2023. Dynamic Linkages between Environmental Factors and Carbon Emissions in Thailand. Environmental Processes, 10(1), 1-26.
  • 11. Rehman, A.U., Malik, A.H., Isa, A.H., Jais, M., 2022. Dynamic Impact of Financial Inclusion and Industrialization on Environmental Sustainability. Social Responsibility Journal, 19(5), 906-929.
  • 12. Hassan, S.T., Wang, P., Khan, I., Zhu, B., 2023. The Impact of Economic Complexity, Technology Advancements, and Nuclear Energy Consumption on the Ecological Footprint of the USA: Towards Circular Economy Initiatives. Gondwana Research, 113, 237-246.
  • 13. Amprazis, A., Galanis, N., Malandrakis, G., Panaras, G., Papadopoulou, P., Galli, A., 2023. The Ecological Footprint of Greek Citizens: Main Drivers of Consumption and Influencing Factors. Sustainability, 15(2), 1377.
  • 14. Mukhtarov, S., Aliyev, F., Aliyev, J., Ajayi, R., 2022. Renewable Energy Consumption and Carbon Emissions: Evidence from an Oil-Rich Economy. Sustainability, 15(1), 134.
  • 15. Wang, J., Dong, K., Wang, K., 2023. Towards Green Recovery: Platform Economy and Its Impact on Carbon Emissions in China. Economic Analysis and Policy, 77, 969-987.
  • 16. Ruan, S., Wan, G., Le, X., Zhang, S., Yu, C., 2023. Combining The Role of the Banking Sector and Natural Resource Utilization on Green Economic Development: Evidence from China. Resources Policy, 83, 103671.
  • 17. Sharma, G.D., Verma, M., Taheri, B., Chopra, R., Parihar, J.S., 2023. Socio-economic Aspects of Hydrogen Energy: An Integrative Review. Technological Forecasting and Social Change, 192, 122574.
  • 18. Wang, Z., Yao-Ping, P.M., Anser, M.K., Chen, Z., 2023. Research on the Impact of Green Finance and Renewable Energy on Energy Efficiency: The Case Study E-7 Economies. Renewable Energy, 205, 166-173.
  • 19. Azni, M.A., Khalid, R., Hasran, U.A., Kamarudin, S.K., 2023. Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. Sustainability, 15(5), 4033.
  • 20. Li, X., Raorane, C.J., Xia, C., Wu ,Y., Tran, T.K.N., Khademi, T., 2023. Latest Approaches on Green Hydrogen as a Potential Source of Renewable Energy Towards Sustainable Energy: Spotlighting of Recent Innovations, Challenges, and Future Insights. Fuel, 334, 126684.
  • 21. Mneimneh, F., Ghazzawi, H., Hejjeh, M.A., Manganelli, M., Ramakrishna, S., 2023. Roadmap to Achieving Sustainable Development via Green Hydrogen. Energies, 16(3), 1368.
  • 22. Hou, Z.M., Xiong, Y., Luo, J.S., Fang, Y.L., Haris, M., Chen, Q.J., Yue, Y., Wu, L., Wang, Q.C., Huang, L.C., Guo, Y.L., Xie, Y.C., 2023. International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China. Petroleum Science, 20(2), 893-909.
  • 23. Patnaik, D., Pattanaik, A.K., Bagal, D.K., Rath, A., 2023. Reducing CO2 Emissions in the Iron Industry with Green Hydrogen. International Journal of Hydrogen Energy, 48, 23449-23458.
  • 24. Nadaleti, W.C., Souza, E.G., Souza, S.N.M., 2022. The Potential of Hydrogen Production from High and Low-Temperature Electrolysis Methods Using Solar and Nuclear Energy Sources: The Transition to a Hydrogen Economy in Brazil. International Journal of Hydrogen Energy, 47(82), 34727-34738.
  • 25. Terlouw, T., Bauer, C., McKenna, R., Mazzotti M., 2022. Large-Scale Hydrogen Production via Water Electrolysis: a Techno-Economic and Environmental Assessment. Energy and Environmental Science, 15(9), 3583-3602.
  • 26. Zhang, L., Wang, Z., Qiu, J., 2022. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation. Advanced Materials, 34(16), e2109321.
  • 27. Berger, N.J., Lindorfer, J., Fazeni, K., Pfeifer, C., 2022. The Techno-Economic Feasibility and Carbon Footprint of Recycling and Electrolysing CO2 Emissions into Ethanol and Syngas in an Isobutene Biorefinery. Sustainable Production and Consumption, 32, 619-637.
  • 28. Chen, Z., Wei, W., Zou, W., Li, J., Zheng, R., Wei, W., Ni, B.J., Chen, H., 2022. Integrating Electrodeposition with Electrolysis for Closed-Loop Resource Utilization of Battery Industrial Wastewater. Green Chemistry, 24(8), 3208-3217.
  • 29. Puig-Samper, G., Bargiacchi, E., Iribarren, D., Dufour, J., 2022. Assessing the Prospective Environmental Performance of Hydrogen from High-Temperature Electrolysis Coupled with Concentrated Solar Power. Renewable Energy, 196, 1258-1268.
  • 30. Nornickel, https://www.nornickel.com/news-and-media/ press-releases-and-news/nornickel-produces-first-batch-of-certified-carbon-neutral nickel/, Access date: 25.04.2023.
  • 31. CO2 Emissions in 2022, https://www.iea.org /reports/co2-emissions-in-2022, Access date: 25.04.2023.
  • 32. Freeport-McMoRan Slashes Carbon Emissions by 21 Percent, https://copperalliance.org/ resource/freeport-mcmoran-slashes-carbon-emi ssions-by-21-percent/, Access date: 25.04.2023.
  • 33. Amin, M., Shah, H.H., Fareed, A.G., Khan, W.U., Chung, E., Zia, A., Rahman-Farooqi, Z.U., Lee, C., 2022. Hydrogen Production Through Renewable and Non-Renewable Energy Processes and Their Impact on Climate Change. International Journal of Hydrogen Energy, 47 (77), 33112-33134.
  • 34. Etminanbakhsh, M., Reza-Allahkaram, S., 2023. Reaction of Aluminum Particles with Superheated Steam to Generate Hydrogen Gas as a Readily Usable Clean Fuel. Fuel, 332, 126011.
  • 35. Kim, C., Cho, S.H., S. Cho, M., Na, Y., Kim, S., Kim, D.K., 2023. Review of Hydrogen Infrastructure: The Current Status and Roll-Out Strategy. International Journal of Hydrogen Energy, 48(5), 1701-1716.
  • 36. Panchenko, V.A., Daus, Y.V., Kovalev, A.A., Yudaev, I.V., Litti, Y.V., 2023. Prospects for the Production of Green Hydrogen: Review of Countries with High Potential. International Journal of Hydrogen Energy, 48(12), 4551-4571.
  • 37. Pham, C.Q., Siang, T.J., Kumar, P.S., Ahmad, Z., Xiao, L., Bahari, M.B., Cao, A.N.T., Rajamohan, N., Qazaq, A.S., Kumar, A., Show P.L., Vo D.V.N., 2022. Production of Hydrogen and Value-Added Carbon Materials by Catalytic Methane Decomposition: A Review. Environmental Chemistry Letters, 20(4), 2339-2359.
  • 38. Vijayaragavan, M., Subramanian, B., Sudhakar, S., Natrayan, L., 2022. Effect of Induction on Exhaust Gas Recirculation and Hydrogen Gas in Compression Ignition Engine with Simarouba Oil in Dual Fuel Mode. International Journal of Hydrogen Energy, 47(88), 37635-37647.
  • 39. Güllü, E., Mert, B.D., Nazligul, H., Demirdelen, T., Gurdal, Y., 2021. Experimental and Theoretical Study: Design and Implementation of a Floating Photovoltaic System for Hydrogen Production. International Journal of Energy Research, 46(4), 5083-5098.
  • 40. Özgür, C., Mert, M.E., 2022. Prediction and Optimization of The Process of Generating Green Hydrogen by Electrocatalysis: A study Using Response Surface Methodology. Fuel, 330, 125610.
  • 41. Nazligul, H., 2021. Experimental and Theoretical Evaluation of Hydrogen Production Via PV-Assisted Alkaline Electrolysis. Master of Science, Adana Alparslan Türkeş Science and Technology University Graduate School of Natural and Applied Sciences, Department of Electrical and Electronic Engineering, Adana, 95.
  • 42. Koca, M.B., Gümüşgöz, Ç.G., Kardaş, G., Yazıcı, B., 2019. NiGa Modified Carbon-Felt Cathode for Hydrogen Production. International Journal of Hydrogen Energy, 44(27), 14157-14163.
  • 43. Zhu, Y., Chen, B., Cheng, T., Du, C., Zhang S., 2020. Deposit Amorphous Ni-Co-B-RE (RE=Ce, Gd and Nd) on Nickel Foam as a High Performance and Durable Electrode for Hydrogen Evolution Reaction. Journal of Electroanalytical Chemistry, 878, 114552.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ