Soya ve Mısır Yağından Biyodizel Üretiminin Yanıt Yüzey Metodu Kullanılarak Optimizasyonu

Bu çalışmada, soya fasulyesi ve mısır yağı karışımından biyodizel üretim prosesi için optimum parametreleri belirlemek amacıyla yanıt yüzey metoduna dayalı merkezi kompozit tasarımı (CCD) kullanılmıştır. Biyodizel üretiminin modellenmesi için dört değişkenli yanıt yüzey metoduna dayalı merkezi kompozit tasarımı uygulanmıştır. Bu nedenle, dört önemli üretimi parametresinin üç farklı seviyesinde 30 deney gerçekleştirilmiştir. Seçilen giriş parametreler, metanol/yağ oranı, reaksiyon süresi, katalizör miktarı ve reaksiyon sıcaklığıdır. En yüksek dönüşüm değeri %94,49 ile 6,97:1 metanol/yağ oranı, 74,99 dakika reaksiyon süresinde, %1,04 katalizör miktarında, 64,99 oC reaksiyon sıcaklığında elde edilmiştir.

Using Response Surface Methodology to Optimize Biodiesel Production from Soybean and Corn Oil

In this work, central composite design based on response surface method was used to determine optimum parameters for biodiesel production process from soybean and corn oil mixture. A central composite design (CCD) of RSM with four variables was applied to model to biodiesel production. For this reason, 30 experiments were performed for three levels of four important process parameters. The optimization parameters were methanol/oil ratio, reaction time, catalyst ratio and reaction temperature. A maximum biodiesel yield of 94.49% is accomplished at 6.97:1 methanol/oil ratio, 74.99 min reaction time, 1.04. wt% catalyst amount and 64.99 oC reaction temperature.

___

  • 1. Adam, I.K., Aziz, A.R.A., Yusup, S., Heikal, M., Hagos, F., 2016. Optimization of Performance and Emissions of a Diesel Engine Fuelled with Rubber Seed-Palm Biodiesel Blends Using Response Surface Method, Asian Journal of Applied Sciences, 4(2), 401-421.
  • 2. Bharadwaj, A.V.S.L., Sai, Niju, S., Begum, K., Meera, M., Anantharaman, N., 2019. Optimization and Modeling of Biodiesel Production Using Fluorite as a Heterogeneous Catalyst, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(15) 1862-1878.
  • 3. Shah, M., Ali, S., Tariq, M., Khalid, N., Ahmad, F., Khan, M.A., 2014. CatalyticConversion of Jojoba Oil into Biodiesel by Organotin Catalysts, Spectroscopic an Chromatographic Characterization, Fuel, 118 392–397.
  • 4. Samuel, O.D., Okwu, M.O., 2019. Comparison of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) in Modellingof Waste Coconut Oil Ethyl Esters Production Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(9), 1049-1061.
  • 5. Kumar, S., 2020. Comparison of Linear Regression and Artificial Neural Networ Technique for Prediction of a SoybeanBiodiesel Yield. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 42(12), 1425-1435.
  • 6. Anbessa, T.T., Karthikeyan, S., 2019.Optimization and Mathematical Modeling of Biodiesel Production using Homogenous Catalyst from Waste Cooking Oil. International Journal of Engineering and Advanced Technology, 9(1), 1733-1739.
  • 7. Betiku, E., Omilakin, O.R., Ajala, S.O., Okeleye, A.A., Taiwo, A.E., Solomon, B.O., 2014. Mathematical Modeling and Process Parameters Optimization Studies by Artificial Neural Network and Response Surface Methodology: A Case of Non-edible Neem (Azadirachta indica) Seed Oil Biodiesel Synthesis, Energy, 72, 266-273.
  • 8. Uslu, S., 2019. Atık Lastik Piroliz Yağı-Dizel Karışımları ile Çalışan Bir Dizel Motorda Emisyon ve Performansın Eşzamanlı Tahminine Yönelik Bir Yanıt Yüzey Metodolojisinin Geliştirilmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7, 1261-1278.
  • 9. Demirkol, S., 2005. Soya Yağının Enzimatik Alkolizi ile Yağ Asidi Metil Esterleri Üretiminin Optimizasyonu. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 91.
  • 10. Kumar, S., Jain, S., Kumar, H., 2017. Process Parameter Assessment of Biodiesel Production from a Jatropha–algae Oil Blend by Response Surface Methodology and Artificial Neural Network. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(21), 19–25.
  • 11. Tshizanga, N., Aransiola, E.F., Oyekola, O., 2017. Optimisation of Biodiesel Production from Waste Vegetable Oil and Eggshell Ash, South African Journal of Chemical Engineering, 23, 145-156.
  • 12. Hamze, H., Akia, M., Yazdani, F., 2015. Optimization of Biodiesel Production from the Waste Cooking Oil Using Response Surface Methodology, Process Safety and Enviromental Protection, 94, 1-10.
  • 13. Danish, M., Kale, P., Ahmad, T., Ayoub, M., Geremew, B., Adeloju, S., 2020. Conversion of Flaxseed Oil into Biodiesel Using KOH Catalyst: Optimization and Characterization Dataset, Data in Brief, 29, 105225.
  • 14. Jahirul, M.I., Koh, W., Brown, R.J., Senadeera, W., O’Hara, I., Moghaddam, L., 2014. Biodiesel Production from Non-Edible Beauty Leaf (Calophyllum inophyllum) Oil: Process Optimization Using Response Surface Methodology (RSM). Energies 7, 5317-5331.
  • 15. Omkaresh, B.R., Suresh, R., Yatish, K.V., 2017. Optimization of Annona Squamosa Oil Biodiesel Production by Using Response Surface Methodology, Biofuels, 8(3), 377-382.
  • 16. Yeşilyurt, M.K., Arslan, M., Eryılmaz, T., 2019. Application of Response Surface Methodology for the Optimization of Biodiesel Production from Yellow Mustard (Sinapis alba L.) Seed Oil, International Journal of Green Energy, 16(1), 60-71.
  • 17. Kumar, P., Kumar, N., 2021. Process Optimization for Production of Biodiesel from Orange Peel Oil Using Response Surface Methodology. Energy Sources Part A: Recovery, Utilization and Enviromental Effects, 43(6), 727-737.
  • 18. Srikanth, H.V., Venkatesh, J., Godiganur, S., 2021. Box-behnken Response Surface Methodology for Optimization of Process Parameters for Dairy Washed Milk Scum Biodiesel Production. Bifuels, 12(1), 113-123.
  • 19. Dwivedi, G., Sharma, M.P., 2015. Application of Box–behnken Design in Optimization of Biodiesel Yield from Pongamia Oil and its Stability Analysis. Fuel, 145, 256-262.
  • 20. Mansourpoor, M., Shariati, A., 2012. Optimization of Biodiesel Production from Sunflower Oil Using Response Surface Methodology. J Chem Eng Process Technol, 3(4), 141.
  • 21. Kolakoti, A., Jha, P., Mosa, P.R., Mahapatro, M., Kotaru, T.G., 2020. Optimization and Modelling of Mahua Oil Biodiesel Using RSM and Genetic Algorithm Techniques. Mathematical Models in Enginnering, 6(2), 134-146.
  • 22. Elkelawy, M., Bastawissi, H.A-E., Esmaeil, K. K., Radwan, A.M., Panchal, H., Sadasivuni, K. K., Suresh, M., Israr, M., 2020. Maximization of Biodiesel Production from Sunflower and Soybean Oils and Prediction of Diesel Engine Performance and Emission Characteristics Through Response Surface Methodology, Fuel, 266, 117072.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ