Daraltılmış Treyler Şasi Tasarımı ve Sonlu Elemanlar Metodu ile Yapısal Analizi

Otomotiv sektöründe taşımacılıkta treyler tipi ağır vasıtalar büyük öneme sahiptir. Ülkemizde gerek kullanım alanının geniş olması gerekse de ekonomik ve tecrübeli servis hizmetlerinin bulunması ile damperli treyler tipi taşıtlar daha çok tercih edilmektedir. Damperli treyler tipi araçların ağırlığının büyük oranını şasi oluşturmaktadır. Treyler şasisi dinamik ve statik birçok kuvvete maruz kalmaktadır. Bu sebeplerden treyler üreticileri tarafından da öncelikli çalışma konusu olarak şasi tercih edilmektedir. Bu çalışmada bir treyler şasisinin enine uzunluğu dar yapıda yeniden modellenerek yapısal analizinin eski modeli ile karşılaştırılması amaçlanmaktadır. Bu yeni dar yapıda tasarım, DIN standartlarında belirtilen aks yay merkezleri arası mesafe dikkate alınarak oluşturulmuştur. Mukavemet değerleri korunarak dar yapıda, daha hafif, yakıt ve çevre dostu yeni bir treyler tasarlamak bu çalışmanın ana hedefini oluşturmaktadır. Bu çalışmadaki analiz ve hesaplamalar göstermektedir ki; dar yapıda modellenen treylerin %7 oranında ağırlığında bir azalma meydana gelmiştir. Sonuç olarak, ağırlık azaltımının sağladığı yakıt tasarrufu sayesinde daha çevreci bir treyler tasarımı elde edilmiştir.

Design of Narrowed Trailer Chassis and Structural Analysis with Finite Element Method

Trailer-type heavy vehicles are of great importance in transportation in the automotive sector. Dumper trailer type vehicles are preferred more with their usage area as well as economical and experienced service in our country. A large proportion of the weight of the tipper trailer type is the chassis. The chassis of the trailer is exposed to many dynamic and static forces. For these reasons, it is preferred by the chassis trailer manufacturers also as a priority work subject. In this study, it is aimed to remodel the transverse length of a trailer chassis with a narrow structure and compare the structural analysis with the old model. In this new narrow structure, the design is based on the distances between the axle spring centers specified in DIN standards. Designing a narrow, lighter, fuel, and environment-friendly new trailer by protecting the strength values is the main purpose of this study. The analysis and calculations in this study show that; there has been a 7% reduction in the weight of the trailer modeled in a narrow structure. As a result, a more environmentally friendly trailer design has been achieved thanks to the fuel savings provided by weight reduction.

___

  • 1. Ozturk, F., Toros, S., Esener, E., Uysal, E. 2009. Otomotiv Endüstrisinde Yüksek Mukavemetli Çeliklerin Kullanımının İncelenmesi, TMMOB Makina Mühendisleri Odası, 11. Otomotiv Sempozyumu, Bursa, Türkiye, 50(596), 44-49.
  • 2. Kartal, Y., 2014. Taşıtlarda Akustik Performansı Gözetilerek Uygulanan Ağırlık Azaltma Yöntemleri, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 91.
  • 3. Transport Statistics Great Britain, https://www.gov.uk/government/collections/transport-statistics-great-britain, 17 Aralık 2020, 2012.
  • 4. Mckinnon, A.C., 2006. Life Without Trucks: the Impact of a Temporary Disruption of Road Freight Transport on a National Economy. J. Business Logistics, 27(2), 227251.
  • 5. Galos, J., Sutcliffe, M., Cebon, D., Piecyk, M., Greening, P., 2015. Reducing the Energy Consumption of Heavy Goods Vehicles Through the Application of Lightweight Trailers: Fleet Case Studies, Transportation Research Part D: Transport and Environment. 41, 40-49.
  • 6. Odhams, A.M.C., Roebuck, R.L., Lee, Y.J., Hunt, S.W., Cebon, D., 2010. Factors Influencing the Energy Consumption of Road Freight Transport, Proc. Inst. Mech. Eng. Part C–J. Mech. Eng. Sci. 224(9), 1995-2010.
  • 7. Léonardi, J., Baumgartner, M., 2004. CO2 Efficiency in Road Freight Transportation: Status Quo, Measures, and Potential, Transport. Res. Part D: Transport Environ. 9(6),451–464.
  • 8. Lai, W.T., 2015. The Effects of Eco-driving Motivation, Knowledge, and Reward Intervention on Fuel Efficiency, Transport. Res. Part D: Transport Environ. 34, 155–160.
  • 9. Yang, C., McCollum, D., McCarthy, R., Leighty, W., 2009. Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: a Case Study in California, Transport. Res. Part D: Transport Environ. 14(3), 147–156.
  • 10. Turner, M., Boyce, G., 2005. ROADLITE-Manufacture of a Lightweight, Cost-effective, Polymer Composite Road Trailer, JSAE Annual Congress, CrossRef Test Account Yokohama, Japonya, doi: 10.4271/2005-08-0199.
  • 11. Publishable Final Activity Report D27 – Final Project Report, 2010. Development of Lightweight, Recyclable Thermoplastic Composite Semi-trailer and Boat Hulls with Enhanced Performance. Publishable Final Activity Report D27, EPL Composite Solutions, 46.
  • 12. Verhaeghe, J., 2006. Introducing an Affordable Composite Trailer to a Conservative Market–Reinforced Plastics, 20(5), 34-37.
  • 13. Jarvis, B., 2006. A Composite Glimpse of the Future. The Commercial Motor Magazine Archive. http://archive.commercialmotor.com/ article/12th-october-2006/52/a-composite-glimpse-of-the-future, 17 Ocak 2020.
  • 14. Gardiner, G., 2014. Walmart Uses CFRP to Boost Efficiency: Composites World. https://www.gardnerweb.com/articles/walmart-uses-cfrp-to-boost-efficiency, 18 Ocak 2020.
  • 15. Kaiser, R., 2010. Thermosets and Thermoplastics set to Compete for Composite Trailer Market. European Plastics News, https://www.avk-tv.de/files/pressclip/avk-pc/ 20101220_thermosets_and_thermoplastics_set_to_compete_for_composite_trailer.pdf, 18 Ocak 2020.
  • 16. Galos, J., Sutcliffe, M., 2019. Material Selection and Structural Optimization for Lightweight Truck Trailer Design, SAE International Journal of Commercial Vehicles, 12(4), 281-297.
  • 17. Şen, Ş., Yaşar, M., Koçar, O., 2018. Dorse Tasarımında Stres Dağılım Analizi ve Topoloji Optimizasyonu, Karaelmas Fen ve Müh. Derg., 8(1), 309-316.
  • 18. Yıldırım, H.C., Marquis, G., Sonsino, C.M., 2015. Lightweight Potential of Welded High-strength Steel Joints from S700 Under Constant and Variable Amplitude Loading by High-frequency Mechanical Impact (HFMI) Treatment. Procedia Engineering, 101, 467-475.
  • 19. BPW, 2010, Commercial Vehicle Catalogue 2010/2011- BPW. The Quality Factor 89, 118.
  • 20. Ovalı, İ., Esen, C., 1999. Ansys Workbench, Altın Kitap, Ankara, 560.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ