Bir Kara Aracının Aerodinamik Sürüklenmesi Üzerine Yan Cihazların ve Yan Rüzgâr Akışının Etkisinin İncelenmesi

Bu çalışmada, yakıt tüketimini doğrudan etkilediği için basitleştirilmiş bir kara aracının (Ahmed gövdesi) aerodinamik sürükleme katsayısını gözlemlemek için yan cihazların ve yan rüzgâr akışının etkisi araştırılmıştır. Literatür incelendiğinde eğik açı, hız ve geometrik modifikasyonların etkisini araştıran çalışmalar sunulmuştur. Ancak, kara araçları için farklı sapma açılarında hem yan cihaz etkisini hem de yan rüzgâr akışını öneren az sayıda çalışma bulunmaktadır. Bu nedenle, HAD (Hesaplamalı Akışkanlar Dinamiği) çözümü hem yan cihazlara sahip modelde hem de yan rüzgâr akış koşulunda gerçekleştirilmiştir. Yan rüzgâr akış durumu, sürükleme katsayısının nasıl etkilendiğini gözlemlemek için farklı sapma açılarında (β=5°, 10°, 20° ve 30°) analiz edilmiştir. Sürükleme kuvvetinin büyük bir kısmı akış ayrılması veya ters basınç gradyanından dolayı meydana geldiğinden, yan cihazlara sahip olan ve olmayan modeller için ve yan rüzgâr akış koşulları altında gövdenin arka bölgesindeki basınç konturları sunulmuştur. Yan rüzgâr akış koşulları altında, yan cihazların konumlandığı x-düzleminde akım çizgilerinin hızları sunulmuştur. Ek olarak, girdap büyüklüğü, farklı sapma açılarında yan cihazları olan ve olmayan her iki model için de verilmiştir. Çalışma sonuçlarında, akış ayrılması meydana geldiği ve basınç direncinin artmasına neden olduğu için yan cihazların aerodinamik performansı olumsuz etkilediği gözlemlenmiştir. Yan rüzgâr akış durumu nedeniyle modelin arka bölgesinde de basınç düşüşü gözlemlenmiştir. Bu, sürükleme kuvvetlerinin artmasına neden olmaktadır.

Investigation of the Effect of Side Devices and Crosswind Flow on Aerodynamic Drag of a Ground Vehicle

In the present study, effect of side devices and crosswind flow are investigated to observe aerodynamic drag coefficient for a simplified ground vehicle (Ahmed body) since it directly effects fuel consumption. When the literature was examined, the studies that were investigated effect of slant angle, velocity and geometric modifications were presented. However, there are few studies that proposed both side device effect and crosswind flow for ground vehicles at different yaw angles. The CFD (Computational Fluid Dynamic) solution is performed both model with side devices and crosswind flow condition. The crosswind flow condition has been analyzed at different yaw angles (β=5°, 10°, 20°, and 30°) to observe how to affected drag coefficient. Pressure contours have been presented for model with and without side devices and under the crosswind flow conditions at rear region of body since the most of the drag force occurs flow separation or adverse pressure gradient. The streamlines velocities have been presented at x-plane which is positioned side devices location under the crosswind flow conditions. In addition, vorticity magnitude has been given for both models with and without side devices at different yaw angle. In the results of study are observed that side devices adversely effects aerodynamic performance since flow separation occurs on the side of body and it causes to increase pressure drag. The pressure drop is also observed at rear region of model due to crosswind flow condition. This causes the increase of drag forces.

___

  • 1. Ahmed, S. R., Ramm, G., Faltin, G., 1984. Some Salient Features of the Time-Averaged Ground Vehicle Wake. SAE Transactions, 473-503.
  • 2. Ahmed, Syed R., 1981. Wake Structure of Typical Automobile Shapes. Transaction of the ASME, 162-169.
  • 3. Lienhart, H., Becker, S., 2003. Flow and Turbulence Structure in the Wake of a Simplified Car Model. SAE Transactions, 785-796.
  • 4. Watkins, S., Vino, G., 2008. The Effect of Vehicle Spacing on the Aerodynamics of a Representative Car Shape. Journal of Wind Engineering and Industrial Aerodynamics, 96(6-7), 1232-1239.
  • 5. Meile, W., Brenn, G., Reppenhagen, A., Lechner, B., Fuchs, A., 2011. Experiments and Numerical Simulations on the Aerodynamics of the Ahmed Body. CFD Letters, 3(1), 32-39.
  • 6. Östh, J., Noack, B.R., Krajnović, S., Barros, D., Borée, J., 2014. On the Need for a Nonlinear Subscale Turbulence Term in POD Models as Exemplified for a High-Reynolds- Number Flow over an Ahmed Body. Journal of Fluid Mechanics, 747, 518-544. 7. Volpe, R., Devinant, P., Kourta, A., 2015. Experimental Characterization of the Unsteady Natural Wake of the Full-scale Square Back Ahmed Body: Flow Bi-stability and Spectral Analysis. Experiments in Fluids, 56(5), 99.
  • 8. Tunay, T., Firat, E., Sahin, B., 2018. Experimental Investigation of the Flow Around a Simplified Ground Vehicle under Effects of the Steady Crosswind. International Journal of Heat and Fluid Flow, 71, 137-152.
  • 9. Tunay, T., Drugge, L., O’Reilly, C. J., 2020. On Coupling Methods Used to Simulate the Dynamic Characteristics of Heavy Ground Vehicles Subjected to Crosswind. Journal of Wind Engineering and Industrial Aerodynamics, 201, 104194.
  • 10. McArthur, D., Burton, D., Thompson, M., Sheridan, J., 2018. An Experimental Characterisation of the Wake of a Detailed Heavy Vehicle in Cross-wind. Journal of Wind Engineering and Industrial Aerodynamics, 175, 364-375.
  • 11. Lorite-Díez, M., Jiménez-González, J.I., Pastur, L., Cadot, O., Martínez-Bazán, C., 2020. Drag Reduction on a Three-Dimensional Blunt Body with Different Rear Cavities under Cross-Wind Conditions. Journal of Wind Engineering and Industrial Aerodynamics, 200, 104145.
  • 12. Suzuki, M., Tanemoto, K., Maeda, T., 2003. Aerodynamic Characteristics of Train/vehicles under Cross Winds. Journal of Wind Engineering and Industrial Aerodynamics, 91(1-2), 209-218.
  • 13. Guilmineau, E., Chometon, F., 2009. Effect of Side Wind on a Simplified Car Model: Experimental and Numerical Analysis. Journal of Fluids Engineering, 131(2).
  • 14. Guilmineau, E., Chikhaoui, O., Deng, G., Visonneau, M., 2013. Cross Wind Effects on a Simplified Car Model by a DES Approach. Computers & Fluids, 78, 29-40.
  • 15. Altınışık, A., Umur, H., 2018. Yanal Rüzgar Durumunda Otomobil Aerodinamiği. 9th International Automotive Technologies Congress OTEKON, 7-8 May, 2018, Bursa
  • 16. Zafer, B., Haskaraman, F., 2017. Önden ve Yanal Rüzgar Şartı Altında Ahmed Cisminin Sayısal İncelenmesi. Journal of the Faculty of Engineering & Architecture of Gazi University, 32(1).
  • 17. Bello-Millan, F.J., Mäkelä, T., Parras, L., Del Pino, C., Ferrera, C., 2016. Experimental Study on Ahmed’s Body Drag Coefficient for Different Yaw Angles. Journal of Wind Engineering and Industrial Aerodynamics, 157, 140-144.
  • 18. Tunay, T., Sahin, B., Ozbolat, V., 2014. Effects of Rear Slant Angles on the Flow Characteristics of Ahmed Body. Experimental Thermal and Fluid Science, 57, 165-176.
  • 19. Kara, E., 2018. Numerical Investigation of Slant Angle Effect on a Simplified Car Model with Solution Adaptive Cartesian Grid Method. In International Congress of Automotive and Transport Engineering Springer, Cham. 32-39.
  • 20. Muritala, A.O., Fatokun, H.A., Obayopo, S. O., 2017. Effect of an Add-on Device on the Aerodynamic Characteristics of a 3- Dimensional Ahmed Boyd. IOSR Journal of Mechanical and Civil Engineering, 14(6), 18-29.
  • 21. Ensarioğlu, M.V., 2020. Taşitlarda Yan Ayna Üzerı̇ndekı̇ Aerodı̇namı̇k Etkı̇lerı̇n Nümerı̇k Olarak İncelenmesi. Yüksek Lisans Tezi, Bursa Uludag Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Bursa, 290.
  • 22. Ahmed, A., Murtaza, M.A., 2016. CFD Analysis of Car Body Aerodynamics Including Effect of Passive Flow Devices–A REVIEW. International Journal of Research in Engineering and Technology, 5(3), 141-144.
  • 23. Park, H., Cho, J.H., Lee, J., Lee, D.H., Kim, K.H., 2013. Aerodynamic Drag Reduction of Ahmed Model using Synthetic Jet Array. SAE International Journal of Passenger Cars- Mechanical Systems, 6(2013-01-0095), 1-6.
  • 24. Buscariolo, F.F., Assi, G.R., Sherwin, S.J., 2021. Computational Study on an Ahmed Body Equipped with Simplified Underbody Diffuser. Journal of Wind Engineering and Industrial Aerodynamics, 209, 104411.
  • 25. Yakkundi, V.K., Mantha, S.S., 2010. CFD Analysis of Flow over Car Variants & Validation with Ahmed Body. CURIE Journal, 3(1).
  • 26. Demircioğlu, T.K., 2007. Bir Araç Modelinin Aerodinamik Analizi ve Sonlu Elemanlar Yöntemi ile Simülasyonu. Yüksek Lisans Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Balıkesir, 61.
  • 27. Günay, C., Kumlutaş, D., Özer, Ö., Yücekaya, U.A., 2019. Elektrikli Arabalarin Aerodinamik Karakteristiklerinin Parçacik Görüntülemeli Hiz Ölçüm Yöntemi (Pghö) ve Sayisal Olarak İncelenmesi. 14. Ulusal Tesisat Mühendisliği Kongres, 17-20 Nisan, 2019, İzmir.
  • 28. Han, T., 1989. Computational Analysis of Three-dimensional Turbulent Flow Around a Bluff Body in Ground Proximity. AIAA Journal, 27(9), 1213-1219.
  • 29. Krastev, V.K., Bella, G., 2011. On the Steady and Unsteady Turbulence Modeling in Ground Vehicle Aerodynamic Design and Optimization. SAE Technical Paper, No. 2011- 24-0163.
  • 30. Hinterberger, C., Garcia-Villalba, M., Rodi, W., 2004. Large Eddy Simulation of Flow Around the Ahmed Body. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, Springer, Berlin, Heidelberg, 77-87.
  • 31. Jermann, C., Pujals, G., Meliga, P., Serre, E., Gallaire, F., 2013. Characterization of the Streamwise Vortices and Near-wake Dynamics in the Turbulent Flow Around the 25° Ahmed Body Based on SPIV. In 3rd GDR Symposium “Flow Separation Control”, Ecole Centrale de Lille, 7th and 8th, 2013.
  • 32. Dumas, L., 2008. CFD-Based Optimization for Automotive Aerodynamics. In Optimization and Computational Fluid Dynamics. Springer, Berlin, Heidelberg, 191-215.
  • 33. Beigmoradi, S., Hajabdollahi, H., Ramezani, A., 2014. Multi-Objective Aero Acoustic Optimization of Rear end in a Simplified Car Model by using Hybrid Robust Parameter Design, Artificial Neural Networks and Genetic Algorithm Methods. Computers & Fluids, 90, 123-132.
  • 34. He, P., Mader, C.A., Martins, J.R., Maki, K.J., 2018. An Aerodynamic Design Optimization Framework using a Discrete Adjoint Approach with OpenFOAM. Computers & Fluids, 168, 285-303.
  • 35. Han, T., Hammond Jr, D.C., Sagi, C.J., 1992. Optimization of Bluff Body for Minimum Drag in Ground Proximity. AIAA Journal, 30(4), 882-889.
  • 36. Wang, Y., Wu, C., Tan, G., Deng, Y., 2017. Reduction in the Aerodynamic Drag Around A Generic Vehicle by using a Non-Smooth Surface. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, 231(1), 130-144.
  • 37. Qiao, Z.X., Minelli, G., Noack, B.R., Krajnović, S., Chernoray, V., 2021. Multi- Frequency Aerodynamic Control of a Yawed Bluff Body Optimized with a Genetic Algorithm. Journal of Wind Engineering and Industrial Aerodynamics, 212, 104600.
  • 38. Kalaycı, C., 2021. SUV Model Bir Motorlu Taşıtın Aerodinamik Performansının Sayısal İncelenmesi ve Optimizasyonu. Yüksek Lisans Tezi, Batman Üniversitesi, Lisansüstü Eğitim Enstitüsü, Makine Mühendisliği Anabilim Dalı, Batman, 63.
  • 39. Şumnu, A., 2021. Shape Modification of Ahmed Body to Reduce Drag Coefficient and Determination of Turbulence Model. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 824-832.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ