Farklı Enjeksiyon Basıncının Dizel Motor Performansı ve NOX Emisyonu Üzerindeki Etkilerinin Sayısal Olarak İncelenmesi

Dizel motorların avantajlı verimleri onları en yaygın içten yanmalı motor türü yapmaktadır. Bununla birlikte, dizel motorlar aynı zamanda yanma işlemi sonucunda oluşan partikül madde (PM) ve nitrojen oksit (NOX) emisyonlarının birincil kaynaklarıdır. Dizel motorun performansını etkileyen birçok değişken vardır. Bunlardan biri enjeksiyon basıncıdır. Yanma sürecinin dizel motorların emisyon oluşumunda çok önemli etkisi vardır ve bu süreç yakıt atomizasyonundan büyük ölçüde etkilenmektedir. Enjektörler, yakıtın atomizasyonunu kontrol eden dizel motorların en önemli bileşenlerinden biridir. Günümüzün modern enjektörleri, yakıt atomizasyonunu iyileştirmek için yüksek enjeksiyon basınçları sağlar. Egzoz emisyonlarını ve yakıt tüketimini azaltmak için dört silindirli motorlarda yüksek basınçlı yakıt enjeksiyonunun etkisi sayısal olarak incelenmiştir. Artan enjeksiyon basıncı, özellikle düşük ve orta hızlarda duman ve yakıt tüketimini iyileştirir. Ancak bazı değişkenler basınç artışlarından olumsuz etkilenebilir. Bu çalışmada, 500-800 bar ve 800-1000 bar için farklı enjeksiyon basınçlarında motor performansını etkileyen değişkenler gözlemlenmiş ve sonuçlar paylaşılmıştır.

Numerical Investigation of Effects of Different Injection Pressure on Diesel Engine Performance and NOX Emission

Favourable efficiency of diesel engines makes them the most abundant type of internal combustion engines. However, diesel engines are also primary sources of particulate matter (PM) and nitrogen oxides (NOX) emissions formed as a result of the combustion process. There are many variables to affect the performance of diesel engine. One of them is injection pressure. Combustion process has a crucial effect on emission formation of diesel engines and this process is highly affected by fuel atomization. Injectors are one of the most important components of diesel engines that control the atomization of fuel. Today’s modern injectors provide high injection pressures to improve fuel atomization. To reduce exhaust emissions and fuel consumption, the effect of high-pressure fuel injection was investigated in fourcylinder engines numerically. Increased injection pressure improves smoke and fuel consumption, especially at low and medium speeds. However, some variables can be adversely affected by pressure increases. In this study, variables affecting engine performance were observed at different injection pressures for 500-800 bar and 800-1000 bar, and the results were shared.

___

  • 1. Tüccar, G., Özgür, T., Aydin, K., 2014. Effect of Diesel-microalgae Biodiesel-butanol Blends on Performance and Emissions of Diesel Engine. Fuel. 132, 47–52. doi:10.1016/j.fuel.2014.04.074.
  • 2. Atadashi, I.M., Aroua, M.K., Aziz, A.A., 2010. High Quality Biodiesel and its Diesel Engine Application: A Review. Renewable and Sustainable Energy Reviews. 14(7), 1999–2008. doi: 10.1016/j.rser.2010.03.020.
  • 3. Abed, K.A., Gad, M.S., El Morsi, A.K., Sayed, M.M., Elyazeed, S.A., 2019. Effect of Biodiesel Fuels on Diesel Engine Emissions. Egyptian Journal of Petroleum. 28(2), 183–8. doi: 10.1016/j.ejpe.2019.03.001.
  • 4. Chauhan, B.S., Kumar, N., Cho, H.M., Lim, H.C., 2013. A Study on the Performance and Emission of a Diesel Engine Fueled with Karanja Biodiesel and its Blends. Energy. 56,1–7. doi: 10.1016/j.energy.2013.03.083.
  • 5. Likhanov, V.A., Lopatin, O.P., Yurlov, A.S., 2020. Biofuel Based on Methanol and Methyl Ester of Rapeseed Oil for Diesel Engine. IOP Conference Series: Materials Science and Engineering. 734, 1-5. doi: 10.1088/1757- 899X/734/1/012208.
  • 6. Yildiz, I., Açıkkalp, E., Caliskan, H., Mori, K., 2019. Environmental Pollution Cost Analyses of Biodiesel and Diesel Fuels for a Diesel Engine. Journal of Environmental Management. 243(May), 218–26. doi:10.1016/j.jenvman.2019.05.002.
  • 7. Shrivastava, P., Verma, T.N., 2020. Effect of Fuel Injection Pressure on the Characteristics of CI Engine Fuelled with Biodiesel from Roselle Oil. Fuel. 265(December 2019): 117005. doi: 10.1016/j.fuel.2019.117005.
  • 8. Agarwal, A.K., Dhar, A., Gupta, J.G., Kim, W. Il., Choi, K., Lee, C.S., Park, S., 2015. Effect of Fuel Injection Pressure and Injection Timing of Karanja Biodiesel Blends on Fuel Spray, Engine Performance, Emissions and Combustion Characteristics. Energy Conversion and Management, 91, 302–14. doi:10.1016/j.enconman.2014.12.004.
  • 9. Taymaz, I., Çakir, K., Mimaroglu, A., 2005. Experimental Study of Effective Efficiency in a Ceramic Coated Diesel Engine. Surface and Coatings Technology. 200 (1-4 SPEC. ISS.):1182–5. doi: 10.1016/j.surfcoat.2005.02.049.
  • 10. Saravanan, N., Nagarajan, G., 2008. An Experimental Investigation of Hydrogenenriched air Induction in a Diesel Engine System. International Journal of Hydrogen Energy. 33(6): 1769–75. doi:10.1016/j.ijhydene.2007.12.065.
  • 11. Park, S., Kim, Y., Woo, S., Lee, K., 2017.Optimization and Calibration Strategy Using Design of Experiment for a Diesel Engine. Applied Thermal Engineering. 123, 917–28.doi: 10.1016/j.applthermaleng.2017.05.171.
  • 12. Geng, P., Cao, E., Tan, Q., Wei, L., 2017. Effects of Alternative Fuels on the Combustion Characteristics and Emission Products from Diesel Engines: A Review. Renewable and Sustainable Energy Reviews. 71(October2015): 523–34. doi: 10.1016/j.rser.2016.12.080.
  • 13. Fayad, M.A., 2020. Effect of Renewable Fuel and Injection Strategies on Combustion Characteristics and Gaseous Emissions in Diesel Engines. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 42(4): 460–70. doi: 10.1080/15567036.2019.1587091.
  • 14. Kannan, K., Udayakumar, M., 2010. Experimental Study of the Effect of Fuel Injection Pressure on Diesel Engine Performance and Emission. Journal of Engineering and Applied Sciences. 5(5), 42–5.
  • 15. Shimada, T., Shoji, T., Takeda, Y., 1989. The Effect of Fuel Injection Pressure on Diesel Engine Performance. SAE Technical Papers. 98(1989): 1906–15. doi:10.4271/891919.
  • 16. Gumus, M., Sayin, C., Canakci, M., 2012. The Impact of Fuel Injection Pressure on the Exhaust Emissions of a Direct Injection Diesel Engine Fueled with Biodiesel-diesel Fuel Blends. Fuel. 95(x), 486–94. doi: 10.1016/j. fuel.2011.11.020.
  • 17. Park, S.H., Kim, H.J., Lee, C.S., 2010. Comparison of Experimental and Predicted Atomization Characteristics of High-pressure Diesel Spray Under Various Fuel and Ambient Temperature. Journal of Mechanical Science and Technology. 24(7), 1491–9. doi: 10.1007/s12206-010-0417-1.
  • 18. Lion, S., Vlaskos, I., Taccani, R., 2020. A Review of Emissions Reduction Technologies for Low and Medium Speed Marine Diesel Engines and Their Potential for Waste Heat Recovery. Energy Conversion and Management. 207(September 2019): 112553. doi: 10.1016/j.enconman.2020.112553.
  • 19. Johnson, T., Joshi, A., 2018. Review of Vehicle Engine Efficiency and Emissions. SAE International Journal of Engines. 11(6), 1307–30. doi: 10.4271/2018-01-0329.
  • 20. Agarwal, A.K., Dhar, A., Srivastava, D.K., Maurya, R.K., Singh, A.P., 2013. Effect of Fuel Injection Pressure on Diesel Particulate Size and Number Distribution in a CRDI Single Cylinder Research Engine. Fuel. 107, 84–9. doi: 10.1016/j.fuel.2013.01.077.
  • 21. Rajak, U., Nashine, P., Verma, T.N., 2019. Effect of Fuel Injection Pressure in a Diesel Engine Using Microalgae-diesel Emulsion. International Journal of Engineering and Advanced Technology. 8(3), 263–71.
  • 22. Obländer, K., Kollmann, K., Krämer, M., Kutschera, I., 1989. The Influence of High Pressure Fuel Injection on Performance and Exhaust Emissions of a High Speed Direct Injection Diesel Engine. SAE Technical Papers. 98, 722–41. doi: 10.4271/890438.
  • 23. Wakode, V.R., Kanase-Patil, A.B., 2017. Regression Analysis and Optimization of Diesel Engine Performance for Change in Fuel Injection Pressure and Compression Ratio. Applied Thermal Engineering. 113, 322–33. doi: 10.1016/j.applthermaleng.2016.10.178.
  • 24. Karthic, S. V., Senthil Kumar, M., Nataraj, G., Pradeep, P., 2020. An Assessment on Injection Pressure and Timing to Reduce Emissions on Diesel Engine Powered by Renewable Fuel. Journal of Cleaner Production. 255, 120186. doi: 10.1016/j.jclepro.2020.120186.
  • 25. Yasin, M.H.M., Mamat, R., Yusop, A.F., Idris, D.M.N.D., Yusaf, T., Rasul, M., Najafi, G., 2017. Study of a Diesel Engine Performance with Exhaust Gas Recirculation (EGR) System Fuelled with Palm Biodiesel. Energy Procedia. 110. 26-31. 10.1016/j.egypro.2017.03.100.
  • 26. Adesina, O.K., Olanrewaju, A.I., Peter, O.A., 2020. Performance Characteristics of a Single- Cylinder Two-Stroke Diesel Engine Using Diesel-RK Software 1 11(6), 463–72.
  • 27. Siddique, S.K.A., Vijaya, K., Reddy, K., 2015. Theoretical Investigation on Combustion Chamber Geometry of DI Diesel Engine to Improve the Performance by Using Diesel-RK. International Journal of Innovative Technology and Exploring Engineering (IJITEE). (10),2278–3075.
  • 28. Paul, G., Datta, A., Mandal, B.K., 2014. An Experimental and Numerical Investigation of the Performance, Combustion and Emission Characteristics of a Diesel Engine Fueled with Jatropha Biodiesel. Energy Procedia. 54, 455–67. doi: 10.1016/j.egypro.2014.07.288.
  • 29. Datta, A., Mandal, B.K., 2016. Impact of Alcohol Addition to Diesel on the Performance Combustion and Emissions of a Compression Ignition Engine. Applied Thermal Engineering. 98, 670–82. doi: 10.1016/j.applthermaleng. 2015.12.047.
  • 30. Krishania, N., Rajak, U., Nath Verma, T., Kumar Birru, A., Pugazhendhi, A., 2020. Effect of Microalgae, Tyre Pyrolysis Oil and Jatropha Biodiesel Enriched with Diesel Fuel on Performance and Emission Characteristics of CI Engine. Fuel. 278(June), 118252. doi: 10.1016/j.fuel.2020.118252.
  • 31. Plotnikov, L., Osipov, L., 2020. Improving the Operating Cycle of a Diesel Engine on Biofuel Based on Numerical Modeling. Proceedings of the 2020 Ural Smart Energy Conference, USEC 2020. 122–5. doi: 10.1109/USEC50097.2020.9281254.