Electrospun Nanofibröz Matlardan Ampisilin Salımının Sayısal Analizi

Elektrospun nanofibröz mat, ilaç salım çalışmaları için güncel bir tekniktir. Bu nedenle, mevcut sorunların üstesinden gelmek ve yeni ilaç salım sistemleri oluşturmak için bu tür sistemlerin ilaç salım davranışını incelemek önemlidir. Bu makalede, bu gerekliliğin karşılanması için sayısal bir çalışma yapılmış ve mevcut sayısal veriler literatürde bulunan deneysel çalışma sonuçları ile doğrulanmıştır. Geçici Langmuir-Freundlich adsorpsiyon-desorpsiyon izotermi, elektrospun nanofibröz sistemin mükemmel kuyu koşulları altında ilaç salım davranışını açıklamak için kullanılmıştır. Difüzyonun etkisi de hesaba katılmıştır. İlaç salım oranları, farklı ilk ilaç konsantrasyonları, gözenek değerleri, geçirgenlik kütle katsayıları ve mat yüzey alanları için araştırılmıştır. Ayrıca gözenek ve ilk ilaç konsantrasyonu arasındaki ilişki de bu çalışmada verilmiştir. Çeşitli başlangıç ilaç konsantrasyonları ve gözenekler vasıtasıyla ilaç salım oranlarında bazı önemli değişikliklerin meydana geldiği görülmüştür. İlaç salım hızı, geçirgenlik katsayısı veya yüzey alanı ile değişmekle birlikte, bu değişimlerde yukarıda bahsedilen parametrelere göre küçük farklılıklar gözlenmektedir. Sayısal kodun sonuçları deneysel verilerle uyumludur.

Numerical Analysis of Ampicillin Release from Electrospun Nanofibrous Mats

The electrospun nanofibrous mat is an emerging tool for drug release studies. Therefore, it is essential to predict this type of system's drug release behavior to overcome the existing problems and generate novel drug release systems. In the present work, a numerical study is performed for fulfilling this requirement, and the current numerical data is validated with the experimental study, which is available in the open literature. Transient Langmuir-Freundlich adsorption-desorption isotherm is employed for describing the drug release behavior of the electrospun nanofibrous system under perfect sink conditions. The effect of the diffusion phenomenon is also taken into account. Drug release rates are investigated for different initial drug concentrations, porosity values, permittivity mass coefficients, and mat surface areas. Moreover, the relationship between the porosity and the initial drug concentration is also presented. It can be reported that significant alterations occur in drug release rates through varied initial drug concentrations and porosity. Although the drug release rate is altered with permittivity coefficient or surface area, minor variations are observed compared to the parameters above. The results of the numerical code agree well with the experimental data.

___

  • 1. Jaimini, M., Kothari, A.H., 2012. Sustained Release Matrix Type Drug Delivery System: A Review. J Drug Deliv Ther, 2(6), 142-148 https://doi.org/10.22270/jddt.v2i6.340.
  • 2. Borgquist, P., Körner, A., Piculell, L., Larsson, A., Axelsson, A., 2006. A Model for the Drug Release from a Polymer Matrix Tablet-effects of Swelling and Dissolution. J Control Release,113, 216–225.
  • 3. Kuentz, M., Holm, R., Elder, D.P., 2016. Methodology of Oral Formulation Selection in the Pharmaceutical Industry. Eur J Pharm Sci, 87, 136–163.
  • 4. Patel, H., Panchal, D.R., Patel, U., Brahmbhatt, T., Suthar, M., 2011. Matrix Type Drug Delivery System: A Review. J Pharm Sci Biosci Res, 1,143–151.
  • 5. Tan, H.W., Xing, S.S., Bi, X.P., Li, L., Gong, H.P., Zhong, M., Zhang, Y., Zhang, W., 2008. Felodipine Attenuates Vascular Inflammation in a Fructose-induced Rat Model of Metabolic Syndrome Via the Inhibition of NF-κB Activation. Acta Pharmacol Sin, 29(9),1051-9.
  • 6. Pitt, C.G., Schindler, A., 1995. The Kinetics of Drug Cleavage and Release from Matrices Containing Covalent Polymer-drug Conjugates. J Control Release, 33, 391–5.
  • 7. Frenning, G., Fichtner, F., Alderborn, G., 2005. A New Method for Characterizing the Release of Drugs from Single Agglomerates. Chem Eng Sci, 60, 3909-18.
  • 8. Chou, S.F., Carson, D., Woodrow, K.A., 2015. Current Strategies for Sustaining Drug Release from Electrospun Nanofibers. Journal of Controlled Release, 220, 584-591.
  • 9. Doshi, J., Reneker, D.H., 1995. Electrospinning Process and Applications of Electrospun Fibers. Journal of Electrostatics, 2, 151-160.
  • 10. Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., Chu, B., 2002. Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes. Polymer, 43(16), 4403-4412.
  • 11. Hamori, M.M., Shin, M., Rutledge, G., Brenner, M.P., 2001. Preparation and Pharmaceutical Evaluation of Nanofiber Matrix Supported Drug Delivery System Using the Solvent-based Electrospinning Method. Physics of Fluids, 13(8), 2201-2220.
  • 12. Agarwal, S., Wendorff, J.H, Greiner, A., 2008. Use of Electrospinning Technique for Biomedical Applications. Polymer, 49, 5603-562.
  • 13. Bedform, N.M., Steckl, A.J., 2010. Photocatalytic Self-Cleaning Textile Fibers by Coaxial Electrospinning. ACS Applied Materials & Interfaces, 2(8), 2448-2455.
  • 14. Aceituno-Medina, M., Mendoza, S., Lagaron, J.M., Loperz-Rubio, A., 2013. Development and Characterization of Food-grade Electrospun Fibers from Amaranth Protein and Pullulan Blends. Food Research International, 54(1), 667-674.
  • 15. Hamori, M., Yoshimatsu, S., Hukuchi, Y., Shimizu, Y., Fukushima, K., Sugioka, N., Nishimura, A., Shibata, N., 2014. International Journal of Pharmaceutics, 464(1-2), 243-251.
  • 16. Sun, B., Long, Y.Z., Chen, Z.J., Liu, S.L., Zhang, H.D., Zhang, J.C., Han, W.P., 2014. Recent Advances in Flexible and Stretchable Electronic Devices Via Electrospinning. Journal of Materials Chemistry C, 2, 1209-1219.
  • 17. Liu, H., Edel, J.B., Bellan, L.M. Craighead, H.G., 2006. Electrospun Polymer Nanofibers as Subwavelength Optical Waveguides Incorporating Quantum Dots. Small, 2(4), 495-499.
  • 18. Khil, M.S., Cha, D.I., Kim, H.K., Kim, I.S., Bhattarai, N., 2003. Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67B(2), 675-679.
  • 19. Ren, X., Akdag, A., Zhu, C., Kou, L., Worley, S.D., 2009. Electrospun Polyacrylonitrile Nanofibrous Biomaterials. Journal of Biomedical Materials Research Part A, 91A(2), 385-390.
  • 20. Ren, G., Xu, X., Liu, Q., Cheng J., Yuan, X., Wu, L., Wan, Y., 2006. Electrospun Poly (vinyl alcohol)/glucose Oxidase Biocomposite Membranes for Biosensor Applications. Reactive and Functional Polymers, 66(12), 1559-1564.
  • 21. Yoshimoto, H., Shin, Y.M., Terai, H., Vacanti, J.P., 2003. A Biodegradable Nanofiber Scaffold by Electrospinning and its Potential for Bone Tissue Engineering. Biomaterials, 24, 2077-2082.
  • 22. Zhou, F.L., Hubbard, P.L., Eichborn, S.J., Parker, G.J.M., 2012. Coaxially Electrospun Axon-mimicking Fibers for Diffusion Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 4, 6311-6316.
  • 23. Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., Jing, X., 2014. Electrospinning of Polymeric Nanofibers for Drug Delivery Applications. Journal of Controlled Release, 185, 12-21.
  • 24. Liang, D., Hsiao, B.S., Chu, B., 2007. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications. Advanced Drug Delivery Reviews, 59(14), 1392–1412.
  • 25. Kenawy, E.R., Bowlin, G.L., Mansfield, K., Layman, J., Simpson, D.G., Sanders, E.H., Wnek, G.E., 2002. Release of Tetracycline Hydrochloride from Electrospun Poly (ethylene-co-vinylacetate), Poly (lactic acid), and a Blend. Journal of Controlled Release, 81(1-2), 57-64.
  • 26. Zeng, J., Yang, L., Liang, Q., Guan, H., Xiuling, X., Chen, X., Jing, X., 2005. Influence of the Drug Compatibility with Polymer Solution on the Release Kinetics of Electrospun Fiber Formulation. Journal of Controlled Release, 105(1-2), 43-51.
  • 27. Cui, W., Li, X., Zhu, X., Yu, G., Zhou, S., Weng, J., 2006. Investigation of Drug Release and Matrix Degradation of Electrospun Poly (dl-lactide) Fibers with Paracetanol Inoculation. Biomacromolecules, 7(5), 1623-1629.
  • 28. Nakielski, P., Kowalczyk, T., Zembrzycki, K., Kowalewski, T.A., 2014. Experimental and Numerical Evaluation of Drug Release from Nanofiber Mats to Brain Tissue. Journal of Biomedical Materials Research B: Applied Biomaterials, 103B(2), 282-291.
  • 29. Petlin, D.G., Amarah, A.A., Tverdokhlebov, S.I., Anissimov, Y.G., 2017. A Fiber Distribution Model for Predicting Drug Release Rates. Journal of Controlled Release, 258, 218-225.
  • 30. Sultanova, Z., Kaleli, G., Kabay, G., Mutlu, M., 2016. Controlled Release of a Hydrophilic Drug from Coaxially Electrospun Polycaprolactone Nanofibers. International Journal of Pharmaceutics, 505, 133-138.
  • 31. Lam, C.X.F., Savalani, M.M., Teoh, S.H., Hutmacher, D.W., 2008. Dynamics of in Vitro Polymer Degradation of Polycaprolactone- Based Scaffolds: Accelerated Versus Simulated Physiological Conditions. Biomedical Materials, 3(3), 034108.
  • 32. Kabay, G., Meydan, A.E., Can Kaleli, G., Demirci, C., Mutlu, M., 2017. Controlled Release of a Hydrophilic Drug from Electrospun Amyloid-like Protein Blend Nanofibers. Materials Science & Engineering C, 81, 271-279.
  • 33. Tatlisoz, M.M., Demirturk, E., Canpolat, C., 2021. Release Characteristics of Gliclazide in a Matrix System. In Silico Pharmacol. 9, 12.
  • 34. Frenning, G., Brohede, U., Stromme, M., 2005. Finite Element Analysis of the Release of Slowly Dissolving Drugs from Cylindrical Matrix Systems. Journal of Controlled Release, 107, 320-329.
  • 35. Siepmann, J., Podual, K., Sriwongjanya, M., Peppas, N.A., Bodmeier, R., 1998. A New Model Describing the Swelling and Drug Release Kinetics from Hydroxypropyl Methylcellulose Tablets, Journal of Pharmaceutical Sciences, 88(1), 65-72.