Çeşitli Matris Malzemelerinin Bazalt/Jüt/Cam Elyaf Takviyeli Hibrit Kompozitlerin Mekanik Özelliklerine Etkisi

Bu araştırmada, farklı matris malzemelerinin (epoksi ve vinilester) Bazalt, Jüt ve Cam elyaf esaslı hibrit kompozitlerin mekanik özellikleri üzerindeki etkisi mekanik ve morfolojik olarak analiz edilmiştir. Çekme testi ve Vickers sertlik testi ile mekanik test sonuçları elde edilirken, Taramalı Elektron Mikroskobu ile morfolojik görüntüler elde edildi. Takviye elemanı olarak bazalt elyaf kumaş, Jüt elyaf kumaş ve 86 gr/m² ve 100 gr/m² cam elyaf kumaşlar, matris malzemesi olarak epoksi ve vinylester kullanılmıştır. Üretim tekniği olarak vakum destekli reçine transfer kalıplama yöntemi kullanılmıştır. Sonuçlarda, farklı takviye elemanı tipleri ve farklı matris malzemelerinin kullanılmasının üretilen kompozit numunelerin mekanik özelliklerini nasıl etkilediği verilmiştir. Sonuçlar, epoksi ile güçlendirilmiş bazalt elyaf/cam elyafın (100 gr/m²) çekme mukavemetinin üretilen tüm kompozitler içinde en yüksek olduğunu göstermektedir. Mikrosertlik açısından bazalt elyaf/cam elyaf (100 gr/m²) takviyeli epoksi kompozitlerin sertlik değeri, bazalt/cam elyaf (100 gr/m²) takviyeli vinylester kompozitlere göre 1,39 kat daha yüksektir. Hibrit kompozitlerde fiber kopma ve kırılma modunu incelemek için taramalı elektron mikroskobu (SEM) analizi kullanılmıştır. Analiz sonucunda SEM sonuçlarının da mekanik test sonuçlarını desteklediği görülmüştür.

Effect of Various Matrix Materials on Mechanical Properties of Basalt/Jute/Glass Fiber Reinforced Hybrid Composites

In this research, the effect of different matrix materials (epoxy and vinylester) on the mechanical properties of Basalt, Jute, and Glass fiber-based hybrid composites were analyzed mechanically and morphologically. The mechanical test results were achieved by the Tensile test and Vickers hardness test, while morphologic images were obtained by Scanning Electron Microscopy. Basalt fiber fabric, Jute fiber fabric, and Glass fiber fabrics of 86 gr/m² and 100 gr/m² were used as reinforcement elements, while epoxy and vinylester were utilized as matrix materials. A vacuum assisted resin transfer molding method was used as the production technique. In the results, it is given how the use of different reinforcement element types and different matrix materials affects the mechanical properties of the produced composite samples. Results show that the tensile strength of basalt fiber/glass fiber (100 gr/m²) reinforced with epoxy is the highest in all of the produced composites. In terms of microhardness, the hardness value of basalt fiber/glass fiber (100 gr/m²) reinforced epoxy composites have 1.39 times higher than basalt/glass fiber (100 gr/m²) reinforced vinylester composites. Scanning electron microscopy (SEM) analysis was utilized to examine the fiber rupture and fracture mode in hybrid composites. As a result of the analysis, also it was observed SEM results support the mechanical test results.

___

  • 1. Monaldo, E., Nerilli, F.,Vairo, G., 2019. Basalt-Based Fiber-reinforced Materials and Structural Applications in Civil Engineering. Composite Structures, 214, 246–263.
  • 2. Nayak, S.Y., Shenoy,S.,Hameed Sultan, M.T., Kini, C.R., Seth, A., Prabhu, S., Safri, S.N.A., 2021. Effect of CNT-Based Resin Modification on the Mechanical Properties of Polymer Composites. Frontiers in Materials, 7, 1–14.
  • 3. Sfarra, S., Ibarra- Castanedo, C., Santulli, C., Paoletti, A., Paoletti, D., Sarasini, F., Bendada, A., Maldague, X., 2013. Falling Weight Impacted Glass and Basalt Fibre Woven Composites Inspected Using Non-destructive Techniques. Compos. Part B Eng. 45, 601–608.
  • 4. Prasath, K.A., Krishnan, B.R., 2013. Mechanical Properties of Woven Fabric Basalt/Jute Fibre Reinforced Polymer Hybrid Composites. International Journal of Mechanical Engineering Robotics Research, 2(4), 279-290.
  • 5. Andrew, J., Ramesh, C., 2015. Residual Strength and Damage Characterization of Unidirectional Glass–basalt Hybrid/Epoxy CAI Laminates. Arabian Journal for Science and Engineering, 40, 1695–1705.
  • 6. Balaji, K.V., Shirvanimoghaddam, K., Rajan, G.S., Ellis, A.V., Naebe, M., 2020. Surface Treatment of Basalt Fiber for Use in Automotive Composites. Materials Today Chemistry,17, 100334.
  • 7. Abd El-Baky, M.A., Attia, M.A., Abdelhaleem, M.M., Hassan, M.A., 2020. Flax/basalt/E-glass Fibers Reinforced Epoxy Composites with Enhanced Mechanical Properties. Journal National Fibers, Ahead of Print, 1–15.
  • 8. Bijlwan, P.P., Prasad, L., Sharma, A., 2021. Recent Advancement in the Fabrication and Characterization of Natural Fiber Reinforced Composite: A Review. Materials Today: Proceedings, 44, 1718–1722.
  • 9. Fiore, V., Scalici, T., Di Bella, G., Valenza, A., 2015. A Review on Basalt Fibre and its Composite. Composites Part B: Engineering, 74, 74–94.
  • 10. Mishra, R., Jamshaid, H., Militky, J., 2017. Basalt Nanoparticle Reinforced Hybrid Woven Composites: Mechanical and Thermo-mechanical Performance. Fibers Polymers. 18, 2433–2442.
  • 11. Zareei, N., Geranmayeh, A., Eslami-Farsani, R., 2019. Interlaminar Shear Strength and Tensile Properties of Environmentally-friendly Fiber Metal Laminates Reinforced by Hybrid Basalt and Jute Fibers. Polymer Testing, 75, 205–212.
  • 12. Tóth, L.F., Sukumaran, J., Szébenyi, G., Kalácska, A., Fauconnier, D., Nagarajan, R., De Baets, P., 2020. Large-scale Tribological Characterisation of Eco-friendly Basalt and Jute Fibre Reinforced Thermoset Composites. Wear, 450–451, 203274.
  • 13. Sapuan, S.M., Aulia, H.S., Ilyas, R.A., Atiqah, A., Dele-Afolabi, T.T., Nurazzi, M.N., Supian, A.B.M., Atikah, M.S.N., 2020. Mechanical Properties of Longitudinal Basalt/woven-glass-fiber-reinforced Unsaturated Polyester-resin Hybrid Composites. Polymers (Basel), 12, 1–14.
  • 14. Saleem, A., Medina, L., Skrifvars, M., Berglin, L., 2020. Hybrid Polymer Composites of Bio-based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications-A Review. Molecules, 25(21), 4933.
  • 15. Petrucci, R., Santulli, C., Puglia, D., Nisini, E., Sarasini, F., Tirillò, J., Torre, L., Minak, G., Kenny, J.M., 2015. Impact and Post-impact Damage Characterisation of Hybrid Composite Laminates Based on Basalt Fibres in Combination with Flax, Hemp and Glass Fibres Manufactured by Vacuum Infusion. Composites Part B Engineering, 69, 507–515.
  • 16. Sarasini, F., Tirillò, J., Valente, M., Valente, T., Cioffi, S., Iannace, S., Sorrentino, L., 2013. Effect of Basalt Fiber Hybridization on the Impact Behavior Under Low Impact Velocity of Glass/basalt Woven Fabric/epoxy Resin Composites. Composites Part A Applied Sciences Manufacturing, 47, 109–123.
  • 17. Santosh Gangappa, G., Sripad Kulkarni, S., 2021. Experimentation and Validation of Basalt & Jute Fiber Reinforced in Polymer Matrix Hybrid Composites. Materails Today Proceedings, 38, 2372–2379.
  • 18. Jusoh, M.S.M., Yahya, M.Y., Hussein, N.I.S., 2016. The Effect of Fibre Layering Pattern in Resisting Bending Loads of Natural Fibre-based Hybrid Composite Materials. MATEC Web of Conferences, 39, 1–6.
  • 19. Dhiman, P., Sharma, H., 2021. Effect of Walnut Shell Filler on Mechanical Properties of Jute-basalt Hybrid Epoxy Composites. Materials Today: Proceedings, 44, 4537–4541.
  • 20. Kishore, M., Amrita, M., Kamesh, B., 2021. Tribological Properties of Basalt-jute Hybrid Composite with Graphene as Nanofiller. Materials Today: Proceedings, 43, 244–249.
  • 21. Kishore, M., Amrita, M., Kamesh, B., 2021. Experimental Investigation of Milling on Basalt-jute Hybrid Composites with Graphene as Nanofiller. Materials Today: Proceedings, 43, 726–730.
  • 22. Fiore, V., Scalici, T., Sarasini, F., Tirilló, J., Calabrese, L., 2017. Salt-fog Spray Aging of Jute-basalt Reinforced Hybrid Structures: Flexural and Low Velocity Impact Response. Composites Part B Engineering, 116, 99–112.
  • 23. Ma, G., Yan, L., Shen, W., Zhu, D., Huang, L., Kasal, B., 2018. Effects of Water, Alkali Solution and Temperature Ageing on Water Absorption, Morphology and Mechanical Properties of Natural FRP Composites: Plant-based Jute vs. Mineral-based Basalt. Composites Part B Engineering, 153, 398–412.
  • 24. Raajeshkrishna, C.R., Chandramohan, P., Saravanan, D., 2019. Effect of Surface Treatment and Stacking Sequence on Mechanical Properties of Basalt/glass Epoxy Composites. Polymers and Polymer Composites, 27, 201–214.
  • 25. Fiore, V., Scalici, T., Badagliacco, D., Enea, D., Alaimo, G., Valenza, A., 2017. Aging Resistance of Bio-epoxy Jute-basalt Hybrid Composites as Novel Multilayer Structures for Cladding. Composite Structures, 160, 1319–1328.
  • 26. Sánchez-Gálvez, V., Sancho, R., Gálvez, F., Cendón, D., Rey-de-Pedraza, V., 2020. High Speed Impact Performance of Basalt Fiber Reinforced Vinylester Composites at Room and Low Temperatures. International Journal of Lightweight Materials & Manufacture, 3, 416–425.
  • 27. Jusoh, M.S.B.M., Ahmad, H.A.B.I., Yahya, M.Y., 2017. Indentation and Low Velocity Impact Properties of Woven E-glass Hybridization with Basalt, Jute and Flax Toughened Epoxy Composites. 2017 3rd International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), 164–168.
  • 28. Esnaola, A., Ulacia, I., Aretxabaleta, L., Aurrekoetxea, J., Gallego, I., 2015. Quasi-static Crush Energy Absorption Capability of E-glass/polyester and Hybrid E-glass-basalt/polyester Composite Structures. Material and Design, 76, 18–25.
  • 29. ASTM D3039/D3039-M.2000. Standard Test Method for Tensile Properties of Polymer Matrix Composite Material, www.astm.org.
  • 30. Jawaid, M., Thariq, M., Saba, N., 2019. Structural Health Monitoring of Biocomposites, Fibre-reinforced Composites and Hybrid Composites. Woodhead Publishing Series, 1st Edition, 246-256.
  • 31. ASTM E92-17. 2017. Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. www.astm.org.
  • 32. Colombo, C., Vergani, L., Burman, M., 2012. Static and Fatigue Characterisation of New Basalt Fibre Reinforced Composites. Composites Structures, 94(3), 1165–1174.