Açık Kaynak CBS ile ġehiriçi Kargo Ġstasyon Noktalarının Optimizasyonu ve Dağıtım Planlaması

Kargo ve taĢımacılık sektörü her geçen gün daha da büyümektedir. Sektördeki büyüme ve müĢteri isteklerindeki hızlı teslimat talebi karĢısında kaynakların daha verimli yönetilmesi gerekmektedir. Kaynakların daha verimli yönetilebilmesi için kargo Ģubelerinin yer seçimi ve kargo araçlarının güzergah planlama süreçleri önem arz etmektedir. Yer seçimi ve güzergah planlama sürecinde Coğrafi Bilgi Sistemleri (CBS) önemli avantajlar sağlamaktadır. Özellikle açık kaynak kodlu CBS verileri ve CBS yazılımları düĢük maliyetli ve etkin çözümler sunmaktadır. Bu çalıĢmada Gaziantep ilinin ġehitkamil ilçesinde bir kargo firmasının Ģube yerleri irdelenmiĢ ve araçlara ait güzergahlar zaman kaybını ve yakıt tüketimini en aza indirecek Ģekilde analiz edilmiĢtir. Bu kapsamda yol ağı üzerinden isochrone haritalar üretilmiĢ. Bu isochrone bölgeleri içerisinde var olan nüfus sayıları hesaplanmıĢ ve nüfus verilerine göre araç sorumluluk bölgeleri belirlenmiĢtir. Son olarak ta kargo araçlarının bir gün içerisinde teslimat yapması gereken yüzün üzerinde kargonun günlük rota planlaması yapılmıĢtır

___

  • 1. Sridhar, G.V., Vetrivel, S., Venugopal, S., 2018. Employee Attrition and Employee Retention-challenges & Suggestions. 2018 International Conference on Economic Transformation with Inclusive Growth-2018, Chennai, India, 1-16.
  • 2. Alao, D., Adeyemo, A.B., 2013. Analyzing Employee Attrition Using Decision Tree Algorithms. Computing, Information Systems & Development Informatics Journal, 4(1), 17-28.
  • 3. Srivastava, D.K., Nair, P., 2017. Employee Attrition Analysis Using Predictive Techniques. 2017 International Conference on Information and Communication Technology for Intelligent Systems, Ahmedabad, India, 293-300.
  • 4. Raman, R., Bhattacharya, S., Pramod, D., 2019. Predict Employee Attrition by Using Predictive Analytics. Benchmarking: An International Journal, 26(1), 2-18.
  • 5. Gandomi, A., Haider, M., 2015. Beyond the Hype: Big Data Concepts, Methods and Analytics. International Journal of Information Management, 35(2), 137-144.
  • 6. Zhao, W., Pu, S., Jiang, D., 2020. A Human Resource Allocation Method for Business Processes Using Team Faultlines. Applied Intelligence, 50, 2887-2900.
  • 7. Yedida, R., Reddy, R., Vahi, R., Jana, R.J., Gv, A., Kulkarni, D., 2018. Employee Attrition Prediction, arXiv:1806.10480, https://arxiv.org/ ftp/arxiv/papers/1806/1806.10480.pdf
  • 8. Punnoose, R., Ajit, P., 2016. Prediction of Employee Turnover in Organizations Using Machine Learning Algorithms. International Journal of Advanced Research in Artificial Intelligence, 5(9), 22-26.
  • 9. Shankar, R.S., Rajanikanth, J., Sivaramaraju, V.V., Murthy, K.VSSR., 2018. Prediction of Employee Attrition Using Datamining. 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 335-342.
  • 10. Çelik, U., 2019. Estimation of Employee Attrition in Business Life Balance with Data Mining Methods. Journal of Management and Economics Research, 17(1), 63-76.
  • 11. Sevilla, J., 1997. Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems. IEEE Transactions on Nuclear Science, 44(3), 1464 – 1468.
  • 12. Zhang, Y-P., Qiqige, W., Zheng, W., Liu, S., Zhao, C., 2016. gDNA-Prot: Predict DNABinding Proteins by Employing Support Vector Machine and a Novel Numerical Characterization of Protein Sequence. Journal of Theoretical Biology, 406, 8-16.
  • 13. Christo, V.R.E., Nehemiah, H.K., Minu, B., Kannan, A., 2019. Correlation-based Ensemble Feature Selection Using Bioinspired Algorithms and Classification Using Backpropagation Neural Network. Computational and Mathematical Methods in Medicine, 7398307, 1-17.
  • 14. Wang, Z., Fu, Y., Huang, T.S., 2019. Signal Processing. Deep Learning Through Sparse and Low-rank Modeling, San Diego, USA: Academic Press, 121-142.
  • 15. Duda, R.O., Hart, P.E., Stork, D.G., 2000. Pattern Classification. John Wiley & Sons, New York, USA, 688.
  • 16. Raitoharju, J., Kiranyaz, S., Gabbouj, M., 2016. Training Radial Basis Function Neural Networks for Classification via Class-specific Clustering. IEEE Transactions on Neural Networks and Learnıng Systems, 27 12 , 2458- 2471.
  • 17. Schwenker, F., Kestler, H.A., Palm, G., 2001. Three Learning Phases for Radial-basisfunction Networks. Neural Networks, 14, 439- 458.
  • 18. Faris, H., Aljarah, I., Mirjalili, S., 2017. Evolving Radial Basis Function Networks Using Moth–flame Optimizer. Samui, P., Sekhar, S., Balas, V.E., (Ed.), Handbook of Neural Computation, San Diego, USA: Academic Press, 537-550.
  • 19. Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20, 273-297.
  • 20. Battineni, G., Chintalapudi, N., Amenta, F., 2019. Machine Learning in Medicine: Performance Calculation of Dementia Prediction by Support Vector Machines (SVM). Informatics in Medicine Unlocked, 16:100200, 1-8.
  • 21. Awad, M., Khanna, R., 2015. Support Vector Machines for Classification. Awad, M., Khanna, R., (Ed.). Efficient Learning Machines, Berkeley, CA: Apress, 39-66.
  • 22. Ibrikçi, T., Üstün, D., Ersöz Kaya, I., 2012. Diagnosis of Several Diseases by Using Combined Kernels with Support Vector Machine. Journal of Medical Systems, 36(3), 1831-1840.
  • 23. Öztürk, G., Çimen, E., 2019. Polyhedral Conic Kernel-like Functions for SVMs, Turkish Journal of Electrical Engineering & Computer Sciences, 27, 1172-1180.
  • 24. Breiman, L., 2001. Random Forests. Machine Learning, 45(1), 5-32.
  • 25. Pal, M., 2005. Random Forest Classifier for Remote Sensing Classification. International Journal of Remote Sensing, 26(1), 217-222.
  • 26. Winham, S.J., Freimuth, R.R., Biernacka, J.M., 2013. A Weighted Random Forests Approach to Improve Predictive Performance. Statistical Analysis and Data Mining, 6(6), 496-505.
  • 27. Chan, A.P.C., Wong, F.K.W., Hon, C.K.H., Choi, T.N.Y., 2018. A Bayesian Network Model for Reducing Accident Rates of Electrical and Mechanical (E&M) Work. International Journal of Environmental Research and Public Health, 15(11):2496, 1-19.
  • 28. Carson, E., Cobelli, C., 2014. Modelling Methodology for Physiology and Medicine. Elseiver, Waltham, USA, 588.
  • 29. Ruz, G.A., Araya-Diaz, P., 2018. Predicting Facial Biotypes Using Continuous Bayesian Network Classifiers. Complexity, (4075656), 1-14.
  • 30. Fix, E., Hodges, J.L., 1951. Discriminatory Analysis-nonparametric Discrimination: Consistency Properties. Project No. 2-49-004, Report No. 4, Contract No. AF 41(128)-31, USAF School of Aviation, Randolph Field, Texas.
  • 31. Lu, L., Zhu, Z., 2014. Prediction Model for Eating Property of Indica Rice. Journal of Food Quality, 37, 274-280.
  • 32. Cohen, W.W., 1995. Fast Effective Rule Induction. 1995 Twelfth International Conference on Machine Learning, California, 115-123.
  • 33. Rezapour, M., Zadeh, M.K., Sepehri, M.M., 2013. Implementation of Predictive Data Mining Techniques for Identifying Risk Factors of Early AVF Failure in Hemodialysis Patients. Computational and Mathematical Methods in Medicine, 2013 (Article ID: 830745), 1-8.
  • 34. Du, J., 2010. Iterative Optimization of Rule Sets, Master’s Thesis. Technische Universitat Darmstadt, Fachbereich Informatik, Darmstadt, 72.
  • 35. Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and Techniques. Elsevier Inc., San Francisco, USA, 525.
  • 36. Chen, J., Li, Q., Wang, H., Deng, M., 2020. A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta. China, International Journal of Environmental Research and Public Health, 17(1), 49, 1-21.
  • 37. Kaya, I.E., Ibrikci, T., Ersoy, O.K., 2011. Prediction of Disorder with New Computational Tool: BVDEA. Expert Systems with Applications, 38, 14451-14459.
  • 38. Carrington, A.M., Fieguth, P.W., Qazi, H., Holzinger, A., Chen, H.H., Mayr, F., Manuel, D.G., 2020. A New Concordant Partial AUC and Partial C Statistics for Imbalanced Data in the Evaluation of Machine Learning Algorithms. BMC Medical Informatics and Decision Making, 20 (4), 1-12.
  • 39. Yang, Z.R., Thomson, R., McNeil, P., Esnouf, R.M., 2005. RONN: The Bio-Basis Function Neural Network Technique Applied to the Detection of Natively Disordered Regions in Proteins. Bioinformatics, 21, 3369–3376.
  • 40. Alduayj, S.S., Rajpoot, K., 2018. Predicting Employee Attrition Using Machine Learning. IIT 2018: 13th International Conference on Innovations in Information Technology, Al Ain, United Arab Emirates, 93-98.
  • 41. Bhuva, K., Srivastava, K., 2018. Comparative Study of the Machine Learning Techniques for Predicting the Employee Attrition. International Journal of Research and Analytical Reviews, 5(3), 568-577.
  • 42. Paredes, M., 2018. A Case Study on Reducing Auto Insurance Attrition with Econometrics, Machine Learning, and A/B Testing. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 410-414.
  • 43. Sukhadiya, J., Kapadia, H., D’silva, M., 2018. Employee Attrition Prediction Using Data Mining Techniques. International Journal of Management, Technology And Engineering, 8(X), 2882-2888.