IBA ve BAP'nın Boysenberry Sürgün Ucunun in vitro Kültür Yoluyla Mikro Çoğaltılmasına Etkisi

Boysenberry dünyadaki yetiştiriciliği hızla artan, taze tüketime ve işlenmeye olan uygun yüksek kaliteli meyvelere sahip olan önemli bir üzümsü meyvedir. Boysenberrynin çoğaltılmasında kısa sürede çok sayıda ve hastalıktan ari bitki elde edilmesi açısından mikro çoğaltım yöntemleri önem arz etmektedir. Bu çalışmada, IBA ve BAP'nın Boysenberry çeşidinin sürgün ucunun in vitro kültür yoluyla mikro çoğaltımı üzerine etkisi araştırılmıştır. Denemede IBA (0, 0.5, 1, 2 mg l-1) ve BAP (0, 1, 2 mg l-1) bitki büyüme düzenleyicilerinin farklı kombinasyonları kullanılmıştır. Çalışmada boysenberry fidanlarından alınan sürgün uçlarının başlangıç aşamasında MS ortamında 2 hafta gelişmesi sağlanmış ve alt kültüre alınan örneklere IBA ve BAP'nın farklı konsantrasyonları uygulanmıştır. Çalışmada bitki büyüme düzenleyicilerinin bitkilerin büyüme ve gelişmesi üzerine etkisini belirlemek amacıyla bitkilerde sürgün uzunluğu, gövde çapı, yaprak sayısı, yaprak eni ve boyu, yaş ve kuru sürgün ağırlığı, klorofil indexi ölçümleri yapılmıştır. Yapılan değerlendirme sonucunda IBA 0,5 mg l-1 + BAP 0 mg l-1 uygulamasından, en yüksek ortama sürgün yaş (2.05 g) ve kuru ağırlığı (0.541 g), kök yaş ağırlığı (0.58 g), kök uzunluğu (71.27 mm) ve kök sayısı (14 adet) değerleri belirlenmiştir. Bunun yanı sıra en yüksek ortalama yaprak eni (11.77 mm) ve sürgün uzunluğu (66.72 mm) değerleri ise IBA 2 mg l-1 + BAP 0 mg l-1 uygulamasında tayin edilmiştir.

Determination of the Reactions of Safflower Genotypes to Puccinia carthami Under Edirne, Türkiye Conditions

Puccinia carthami'nin neden olduğu aspir pas hastalığı, aspir bitkisinin en önemli fungal hastalıklarından birisidir. Bu çalışmada, 2019 yılında aspir bitkisinin tam çiçeklenme döneminde Edirne ilinde doğal şartlar altında 219 genotipin (159 linoleik ve 60 oleik tip) aspir pas hastalığına karşı dayanıklılığı belirlenmiştir. Hastalık reaksiyonu 0-5 ıskalası kullanılarak değerlendirilmiştir. Çalışma sonucunda 178, 23, 5 ve 3 genotip sırasıyla dayanıklı, orta derecede dayanıklı, orta derecede hassas ve hassas olarak bulunmuştur.

___

  • Ahmed, S., Roberto S.R, Shahab, M., Koyama, R., Colombo R.C., Hussain, I., Sarfaraz, O., 2018. Improvement of blackberry rooting using mini cuttings and different methods of IBA application. International Journal of Biosciences. 13(2), 1-9.
  • Al-Amin, M. D., Karim, M. R., Amin, M. R., Rahman, S., Mamun, A. N. M., 2009. In vitro micropropagation of banana. Bangladesh Journal of Agricultural Research, 34(4), 645-659.
  • Badjakov, I., Georgiev, V., Georgieva, M., Dincheva, I., Vrancheva, R., Ivanov, I., Pavlov, A., 2021. Bioreactor technology for in vitro berry plant cultivation. Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications, 383-431.
  • Bobrowski, V. L., Mello-Farias, P., Petters, J., 1996. Micropropagation of blackberries (Rubus sp.) cultivars. Current Agricultural Science and Technology, 2(1),17-20.
  • Debnath, S. C., 2009. Characteristics of strawberry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Engineering in Life Sciences, 9(3), 239-246.
  • Debnath, S. C., Goyali, J. C., 2020. In vitro propagation and variation of Antioxidant properties in micropropagated Vaccinium berry plants—A review. Molecules, 25(4), 788-814.
  • FAOSTAT. (2021). Crop statistics. Retrieved May 10, 2019, from .
  • Furuuchi, R., Shimizu, I., Yoshida, Y., Hayashi, Y., Ikegami, R., Suda, M., Minamino, T., 2018. Boysenberry polyphenol inhibits endothelial dysfunction and improves vascular health. PLoS One, 13(8),1-16.
  • Gichaba, S. N., 2019. Optimizing micropropagation protocols for wild blackberry (rubus sp). Doctoral dissertation, Egerton University, Horticulture Science, 73p.
  • Gray, D. J., Benton, C. M. 1991. In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant cell, tissue and organ culture, 27(1), 7-14.
  • Hall, H. K., Langford, G., 2005. The 'Boysenberry': development of the cultivar and industries in California, Oregon and New Zealand. In IX International Rubus and Ribes Symposium 777 (pp. 103-108). December, Zlatibor (Serbia).
  • Kefayeti, S., Kafkas, E., Ercisli, S., 2019. Micropropagation of ‘Chester thornless’ blackberry cultivar using axillary bud explants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 162-168.
  • Lipe, J. A., JA, L., 1978. Ethylene in fruits of blackberry and rabbiteye blueberry. Journal of the American Society for Horticultural Science, 103, 76–7.
  • Najaf-Abadi, A. J., Hamidoghli, Y., 2009. Micropropagation of thornless trailing blackberry ('Rubus sp.') by axillary bud explants. Australian Journal of Crop Science, 3(4), 191.
  • Porter, N. G., 1988. Factors influencing the aroma volatiles, sugars, and acids of boysenberry fruit. New Zealand Journal of Experimental Agriculture, 16(4), 349-357.
  • Wood, G. A., Andersen, M. T., Forster, R. L. S., Braithwaite, M., Hall, H. K., 1999. History of Boysenberry and Youngberry in New Zealand in relation to their problems with Boysenberry decline, the association of a fungal pathogen, and possibly a phytoplasma, with this disease. New Zealand Journal of Crop and Horticultural Science, 27, 281-295.
ÇOMÜ Ziraat Fakültesi Dergisi-Cover
  • ISSN: 2147-8384
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: ÇOMÜ Ziraat Fakültesi