Bazı Taneli Ürünlerin Emissivitesi Üzerine Sıcaklık ve Nem İçeriğinin Etkisi

Bazı taneli ürünler için termal ışınım özelliği yani emissivite (ɛ) farklı nem içeriği aralığında belirlenmesi amaçlanmıştır. Taneli ürünlerin emissivite değerleri, dinamik sıcaklık değişim koşullarında boşluk modeli kullanarak doğrudan ölçüm yöntemiyle belirlenmiştir. Emissivite değerleri, ayçiçeği için 0.47 ve 0.87, bezelye için 0.68 ve 0.96, çeltik için 0.49 ve 0.86, keten tohumu için 0.46 ve 0.83, mısır için 0.63 ve 0.96 arasında değişim göstermiştir. Test edilen tüm buğday çeşitlerinin ɛ değeri farklı nem içeriği ve sıcaklık koşullarında 0.50 ve 0.96 arasında değişmiştir. Tüm taneli ürünlerin emissivite değerleri nem içeriği ve sıcaktan etkilenmiştir ve sıcaklığın artmasıyla ɛ değerinde artış olmuştur.

Effects of Moisture Content and Temperature on The Emissivity of Some Seeds

The selected thermal radiative property, namely emissivity (ɛ) was aimed to determine for some seeds at different moisture content ranges. The emissivity values for the seeds were determined via direct measurement method using cavity model in dynamic temperature conditions. Seed emissivity values were determined to vary between 0.47 and 0.87 for sunflower, between 0.68 and 0.96 for pea, between 0.49 and 0.86 for paddy, between 0.46 and 0.83 for flax and between 0.63 and 0.96 for corn. The ɛ value of wheat seeds ranged between 0.50 to 0.96 for all tested varieties under conditions of varying moisture content and temperature. Emissivity values of all seeds were affected by temperature and moisture content. The emissivity values increased with increasing temperature.

___

  • ASABE, 2012. Moisture measurement-unground grain and seeds. ASABE Stand. 1988, 2–4. doi:https://doi.org/10.13031/2013.24272
  • Basterra, G.L.L.A., Casado, L.A.M., 2013. Determination of the emissivity of wood for inspection by infrared thermography. J Nondestruct Eval. 32, 172–176. doi:10.1007/s10921-013-0170-3
  • Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P., 2011. Fundamentals of heat and mass transfer, 7th Editio. ed. John Wiley & Sons, Inc., NewYork, USA.
  • Chen, C., 2015. Determining the leaf emissivity of three crops by infrared thermometry. Sensors. 15, 11387–11401. doi:10.3390/s150511387
  • Hellebrand, H.J., Beuche, H., Linke, M., 2001. Determination of thermal emissivity and surface temperature distribution of horticultural products, in: Sixth International Symposium on Fruit, Nut and Vegetable Production Engineering. Postdam, Germany, pp. 1–6.
  • Ilyasov, S.G., Kransikov, V.V., 1991. Physical principles of infrared irradiation of foodstuffs. Hemisphere Pub. Corp., NewYork, USA.
  • Kayisoglu, B., Kocabiyik, H., Akdemir, B., 2004. The effect of moisture content on the thermal conductivities of some cereal grains. J. Cereal Sci. 39. doi:10.1016/S0733-5210(03)00047-X
  • Kocabiyik, H., 2012. Biological Materials and Food-Drying Innovations, in: Rajeev, B., Alias, A.K., Paliyath, G. (Eds.), Progress in Food Preservation. Wiley-Blackwell, Oxford, UK, pp. 129–142. doi:10.1002/9781119962045.ch6
  • Kocabiyik, H., Kayisoglu, B., Tezer, D., 2009. Effect of Moisture Content on Thermal Properties of Pumpkin Seed. Int. J. Food Prop. 12, 277–285. doi:10.1080/10942910701673519
  • Krishnamurthy, K., Khurana, H.K., Soojin, J., Irudayaraj, J., Demirci, A., 2008. Infrared heating in food processing: An overview. Compr. Rev. Food Sci. Food Saf. 7, 2–13. doi:10.1111/j.1541-4337.2007.00024.x
  • Llave, Y., Takemori, K., Fukuoka, M., Takemori, T., Tomita, H., Sakai, N., 2017. Analysis of browning of broiled foods by noncontact techniques: A case study for japanese eggplant (Solanum Melongena). J. Food Process Eng. 40. doi:10.1111/jfpe.12347
  • López, A., Molina-Aiz, F.D., Valera, D.L., Peña, A., 2012. Determining the emissivity of the leaves of nine horticultural crops by means of infrared thermography. Sci. Hortic. (Amsterdam). 137, 49–58. doi:10.1016/j.scienta.2012.01.022
  • Nithya, U., Chelladurai, V., Jayas, D.S., White, N.D.G., 2011. Safe storage guidelines for durum wheat. J. Stored Prod. Res. 47, 328–333. doi:10.1016/j.jspr.2011.05.005
  • Nunak, T., Rakrueangdet, K., Nunak, N., Suesut, T., 2015. Thermal image resolution on angular emissivity measurements using infrared thermography. Proc. Int. MultiConference Eng. Comput. Sci. I.
  • Pawar, S.B., Pratape, V.M., 2017. Fundamentals of infrared heating and its application in drying of food materials: A Review. J. Food Process Eng. 40. doi:10.1111/jfpe.12308
  • Rakrueangdet, K., Nunak, N., Suesut, T., Sritham, E., 2016. Emissivity measurements of reflective materials using infrared thermography. Proc. Int. MultiConference Eng. Comput. Sci. I, 16–19.
  • Saunders, P., 2004. Reliable infrared temperature measurements of food products. Autom. Control April/May, 20.
  • Tuncel, N.B., Yilmaz, N., Kocabiyik, H., Uygur, A., 2014. The effect of infrared stabilized rice bran substitution on B vitamins, minerals and phytic acid content of pan breads: Part II. J. Cereal Sci. 59, 162–166. doi:10.1016/j.jcs.2013.12.005
  • Yılmaz, N., Tuncel, N.B., Kocabıyık, H., 2014. Infrared stabilization of rice bran and its effects on γ -oryzanol content, tocopherols and fatty acid composition. J Sci Food Agric. 94, 1568–1576. doi:10.1002/jsfa.6459
  • Yu, D.U., Shrestha, B.L., Baik, O.D., 2015. Thermal conductivity , specific heat , thermal diffusivity, and emissivity of stored canola seeds with their temperature and moisture content. J. Food Eng. J. 165, 156– 165. doi:10.1016/j.jfoodeng.2015.05.012
  • Zhang, J., Stewart, J., 2005. Determination of emissivity for breaded chicken products in the far-infrared region, in: ASAE Annual International Meeting. 17 - 20 July 2005. Tampa, Florida.
ÇOMÜ Ziraat Fakültesi Dergisi-Cover
  • ISSN: 2147-8384
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: ÇOMÜ Ziraat Fakültesi