ALTERATIONS OF ALDOSE REDUCTASE ACTIVITY BY INDOLE-3-CARBOXALDEHYDE DERIVATIVES

Öz In diabetic conditions, aldose reductase (AR, EC 1.1.1.21) activity is significantly increased in lens, kidney and nerve tissues. Mainly in ocular and neural tissues increased levels of sorbitol is associated with diabetic complications such as retinopathy, nephropathy, neuropahty, cataract formation and also tissue damage via increased reactive oxygen speices. Recently, there are many studies that show the relationship between this enzyme family and cancer. Aldose reductase is important for the pathway and in turn has been a potential target for drug design. Great number of aldose reductase inhibitors (ARIs) are used for prevention or delay of these diabetic complications and cancer. However, effective ARIs which has benefits in diabetic complications are still under investigation. In this study aldose reductase was partially purified from bovine lens and the inhibitory effects of 16 different indol-3-carboxyaldehydederivatives on aldose reductase enzyme activities were examined by kinetic assays. These results suggested that N'-[(5-bromo-1H-indol-3-yl)methylidene]pyridine-4-carbohydrazide showed that the highest inhibitory activity on AR.

___

Brownlee, M., Biochemistry and molecular cell biology of diabetic complications, Nature, 414 (2001), 813-20.

Balasubramaniam, M., Rema, M., Premanand, C., Biochemical and molecular mechanisms of diabetic retinopathy, Science, 83 (2002), 1506-14.

Srivastava, S.K., Ramana, K.V., Bhatnagar, A., Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options, Endocr Rev, 26 (2005), 380-92.

King, K.D., Jones, J.D., Warthen, J., Microvascular and macrovascular complication in Diabetes Mellitus, Am J Pharm Educ, 69 (2005), 1-10.

Vedantham, S., Ananthakrishnan, R., Schmidt, A.M., Ramasamy, R., Aldose reductase, oxidative stress and diabetic cardiovascular complications, Cardiovasc Hematol Agents Med Chem, 10 (2012), 234–40.

Saraswat, M., Mrudula, T., Kumar, P.U., Suneetha, A., Rao, T.S., Srinivasulu, M., Reddy, G.B., Overexpression of aldose reductase in human cancer tissues, Med Scien Monitor, 12 (2006), 525-29.

Tammali, R., Reddy, A.B., Srivastava, S.K., Ramana, K.V., Targeting Aldose Reductase for the Treatment of Cancer, Curr Cancer Drug Targets, 11(5) (2011), 560-571.

Tammali, R., Reddy, A.B., Srivastava, S.K., Ramana, K.V., Inhibition of Aldose Reductase Prevents Angiogenesis in vitro and in vivo, Angiogenesis, 14 (2011), 209-21.

Milackova, I., Prnova, M.S., Majekova, M., Sotnikova, R., Stasko, M., Kovacikova, L., Banerjee, S., Veverka, M., Stefek, M., 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent, J Enz Inhib Med Chem, 30 (2015), 107-13.

Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B., Oxidative stress, inflammation, and cancer: How are they linked?, Free Radic Biol Med, 49 (2010), 1603–1616.

Maccari, R., Vitale, R.M., Ottanà, R., Rocchiccioli, M., Marrazzo, A., Cardile, V., Graziano, A.C., Amodeo, P., Mura, U., Del Corso, A., Structure-activity relationships and molecular modelling of new 5-Arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents, Eur J Med Chem, 81 (2014), 1−14.

Ramana, K.V., Bhatnagar, A., Srivastava, S., Yadav, U.C., Awasthi, S., Awasthi, Y.C., Srivastava, S.K., Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNEglutathione conjugates in regulating cell growth, J Biol Chem, 281 (2006), 17652–17660.

Tammali, R., Ramana, K.V., Srivastava, S.K., Aldose reductase regulates TNF-alpha-induced PGE2 production in human colon cancer cells, Cancer Lett, 252 (2007), 299–306.

Zeng, K.W., Li J., Dong, X., Wang, Y.H., Ma, Z.Z., Jiang, Y., Jin, H.W., Tu, P.F., Anti Neuroinflammatory Efficacy of the Aldose Reductase Inhibitor FMHM via Phospholipase C/Protein Kinase C Dependent NF-κB and MAPK Pathways, Toxicol Appl Pharmacol, 273 (2013), 159−171.

Shukla, K., Sonowal, H., Saxena, A., Ramana, K.V., Srivastava, S.K., Aldose Reductase Inhibitor, Fidarestat Regulates Mitochondrial Biogenesis Via Nrf2/HO-1/AMPK Pathway In Colon Cancer Cells, Cancer Lett, 411 (2017), 57-63.

Huang, Q., Liu, Q., Ouyang, D., Sorbinil, an Aldolase Reductase Inhibitor, in Fighting Against Diabetic Complications, Med Chem, 15 (1) (2019), 3-7.

Chang, K.C., Laffin, B., Ponder, J., Énzsöly, A., Németh, J., LaBarbera, D.V., Petrash, J.M., Beta-Glucogallin Reduces the Expression of Lipopolysaccharide-Induced Inflammatory Markers by Inhibition of Aldose Reductase in Murine Macrophages and Ocular Tissues, Chem Biol Interact, 202 (2013), 283−287.

Li, L., Chang, K.C., Zhou, Y., Shieh, B., Ponder, J., Abraham, A.D., Ali, H., Snow, A., Petrash, J.M., LaBarbera, D.V., Design of an Amide N-Glycoside Derivative of β-Glucogallin: A Stable, Potent, and Specific Inhibitor of Aldose Reductase, J Med Chem, 57 (2014), 71−77.

Shoeb, M., Ramana, K.V., Srivastava, S.K., Aldose Reductase Inhibition Enhances TRAIL-Induced Human Colon Cancer Cell Apoptosis through AKT/FOXO3a-dependent Upregulation of Death Receptors, Free Radical Biol Med, 63 (2013), 280−290.

Suzen, S., Buyukbingol, E., Recent studies of aldose reductase enzyme inhibition for diabetic complications, Curr Med Chem, 10 (2003), 1329-52.

El-Kabbani, O., Ruiz, F., Darmanin, C., Chung, R.P.T., Aldose reductase structures: implications for mechanism and inhibition, Cell Mol Life Scien, 61 (2004), 750-62.

Sun, G., Ma, Y., Gao, X., König, S., Fales, H.M., Kador, P.F., Method for isolating tight-binding inhibitors of rat lens aldose reductase, Exper Eye Res, 79 (2004), 919-26.

Wang, Z., Ling, B., Zhang, R., Suo, Y., Liu, Y., Yu, Z., Liu, C.J., Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase, J. Mol Grap Model, 28 (2009), 162-9.

Sato, S., Secchi, E.F., Sakurai, S., Ohta, N., Fukase, S., Lizak, M.J., NADPH-dependent reductases and polyol formation in human leukemia cell lines, Chemico-Biol Interac, 143 (2003), 363-71.

Miyamoto, S., Molecular modeling and structure-based drug discovery studies of aldose, Chem-Bio Inform, 2 (2002), 74-85.

Suzen, S., Recent developments of melatonin related antioxidant compounds, Com Chem High T Synt, 9 (2006), 409-19.

Suzen, S., Bozkaya, P., Coban, T., Nebioglu, D., Recent developments of melatonin related antioxidant compounds, J Enzyme Inh Med Chem, 21 (2006), 405-11.

Suzen, S., In Topics in Heterocyclic Chemistry, Spinger-Verlag, Berlin Heidelberg, 2007

Kikkawa, R., Hatanaka, I., Yasuda, H., Kobayashi, N., Shigeta, Y., Terashima, H., Morimura, T., Tsuboshima, M., Effect of a new aldose reductase inhibitor, (E)-3-carboxymethyl-5-[(2E)-methyl-3-phenylpropenylidene] rhodanine (ONO-2235) on peripheral nevre disorders in streptozotocin-diabetic rats, Diabetologia, 24 (1983), 290-2.

Sestanj, K., Bellini, F., Fung, S., Abraham, N., Treasurywala, A., Humber, L., Simard-Dequesne, N., Dvornik, D., N-[5-(trifluoromethyl)-6-methoxy-1-naphthalenyl] thioxomethyl]-N-methylglycine (Tolrestat), a potent, orally active aldose reductase inhibitor, J Med Chem, 27 (1984), 255-6.

Ao, S., Shingu, Y., Kikuchi, C., Takano, Y., Nomura, K., Fujiwara, T., Ohkubo, Y., Notsu, Y., Yamaguchi, I., Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat, Metabolism, 40 (1) (1991), 77-87.

Mylari, B.L., Larson, E.R., Beyer, T.A., Zembrowski, W.J., Aldinger, C.E., Dee, M.F., Siegel, T.W., Singleton, D.H., Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-m (trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners, J Med Chem, 34 (1991), 108-22.

Stribling, D., Mirrlees, D.J., Harrison, H.E., Earl, D.C.N., Properties of ICI 128,436, a novel aldose reductase inhibitor, and its effects on diabetic complications in the rat, Metabolism, 34 (1985), 336-44.

Chen, X., Zhu, C., Guo, F., Qiu, X., Yang, Y., Zhang, S., He, M., Parveen, S., Jing, C., Li, Y., Ma, B.. Acetic acid derivatives of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide as a novel class of potent aldose reductase inhibitors, J Med Chem, 53 (2010), 8330-8344.

Chen, X., Yang, Y., Ma, B., Zhang, S., He, M., Gui, D., Hussain, S., Jing, C., Zhu, C., Yu, Q., Liu, Y., Design and synthesis of potent and selective aldose reductase inhibitors based on pyridylthiadiazine scaffold, Eur J Med Chem, 46 (2011), 1536- 44.

Yang, Y., Zhang, S., Wu, B., Ma, M., Chen, X., Qin, X., He, M., Hussain, S., Jing, C., Ma, B., Zhu, C., An efficient synthesis of quinoxalinone derivatives as potent inhibitors of aldose reductase, Chem Med Chem, 7 (2012), 823-35.

Hamada, Y., Nakamura, J., Clinical potential of aldose reductase inhibitors in diabetic neuropathy, Treat Endocrinol, 3 (2004), 245-55.

Matsumoto, T., Yoshiyuki, K.A., Toyosawa, K., Ueda, Y., Bril, V.J., Long-term treatment with ranirestat (AS-3201), a potent aldose reductase inhibitor, suppresses diabetic neuropathy and cataract formation in rats, Pharmacol Sci, 107 (2008), 340-8.

Daş-Evcimen, N., Yildirim, O., Suzen, S.. Relationship between aldose reductase and superoxide dismutase inhibition capacities of indole-based analogs of melatonin derivatives, Arch Biol Scien, 61 (2009), 675-81.

Ates-Alagoz, Z., Coban, T., Suzen, S., A comparative study: Evaluation of antioxidant activity of melatonin and some indole derivatives, Med Chem Res, 1 (2005), 69-179.

Shirinzadeh, H., Ince, E., Westwell, A.D., Gurer-Orhan, H., Suzen, S., Novel indole-based melatonin analogues substituted with triazole, thiadiazole and carbothioamides: studies on their antioxidant, chemopreventive and cytotoxic activities, J Enzy Inhib Med Chem, 31(6) (2016), 1312-21.

Gurkok, G., Coban, T., Suzen, S., Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: synthesis and structure-activity relationships, J Enzy Inhib Med Chem, 24 (2009), 506-15.

Cerelli, K.J., Curtis, D.L., Dunn, J.P., Nelson, P.H., Peak, T.M., Waterbury, L.D.J., Anti inflammatory and aldose reductase inhibitory activity of some tricyclic aryl acetic acids, Med Chem, 29 (1986), 2347-51.

Bradford, M., A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, 72 (1976), 248–54.

Suzen, S., Das-Evcimen, N., Varol, P., Sarikaya, M., Preliminary evaluation of rat kidney aldose reductase inhibitory activity of 2-phenylindole derivatives: Affiliation to antioxidant activity, Med Chem Res, 16 (2007), 112-18.