Sulu Sarımsak Ekstresinin Deneysel Sepsis Modelinde Böbrek Hasarı Üzerine Etkisi

Amaç: Sepsis, patojenlere veya onların salgıladığı maddelere karşı verilen sistemik inflamatuvar bir yanıttır. Bu çalışmada sepsiste oluşan böbrek hasarına karşı sulu sarımsak ekstresinin olası koruyucu etkisi incelenmiştir. Yöntemler: Çalışmamızda sıçanlar; ‘kontrol’, ‘sepsis’, ‘sepsis+sarımsak’ ve ‘sepsis+ön-tedavili sarımsak’ grupları olmak üzere 4 gruba ayrılmıştır. Sepsis modeli çekal ligasyon ve perforasyon yöntemi ile oluşturulmuştur. ‘Sepsis+ön-tedavili sarımsak’ grubuna sepsis oluşumundan 15 gün önce başlanarak, 250 mg/kg/gün dozunda sulu sarımsak ekstresi oral yoldan uygulanmıştır. ‘Sepsis+sarımsak’ grubunda ise tedavi sepsis uygulamasından hemen sonra tek doz (250 mg/kg) olarak yapılmıştır. Sepsis oluşumundan 12 saat sonra bütün gruplardaki sıçanlar dekapite edilerek, böbrek dokuları alınmıştır. Böbrek dokusunda, glutatyon (GSH) ve malondialdehit (MDA) seviyeleri, süperoksit dismutaz (SOD), doku faktörü (TF), katalaz (CAT) ve miyeloperoksidaz (MPO) aktivitesi tayin edilmiştir. Bulgular: Sepsise bağlı olarak böbrek dokusunda artan MDA düzeyleri ve MPO aktivitesi ile azalan GSH düzeyleri ve SOD ve CAT aktiviteleri sulu sarımsak ekstresi ile geri çevrilmiştir. TF aktivitesi sepsiste değişmemiştir. Kı- salmış pıhtı oluşum zamanı, artmış TF aktivitesini göstermektedir. Bu doğ- rultuda ön-tedavili sepsis sarımsak grubunda TF aktivitesi artmıştır. Sonuç: Sulu sarımsak ekstresi kullanımının yeni sepsis tedavi yöntemleri geliştirilirken oksidan-antioksidan dengesi açısından dikkate alınması gerektiğini düşünmekteyiz. 

Effect of an Aqueous Garlic Extract on Kidney Damage in an Experimental Model of Sepsis

Objective: Sepsis is a systemic inflammatory response against pathogens or substances secreted by pathogens. In this study, the potential protective effect of an aqueous garlic extract (AGE) against sepsis-induced kidney injury. Methods: Rats were divided into four groups: control, sepsis, sepsis+AGEgarlic, and sepsis+pretreated garlic. Sepsis was induced using cecal ligation and perforation. An AGE was orally administered to rats in the sepsis+pretreated garlic group at a dose of 250  (mg/kg/day) for 15 days prior to sepsis induction. In rats in the sepsis+garlic group, the AGE was administered at a single dose (250 mg/kg) immediately after sepsis induction. Twelve hours after sepsis induction, all rats were decapitated and kidney tissues were taken. Glutathione (GSH) and malondialdehyde (MDA) levels and superoxide dismutase (SOD), tissue factor (TF), catalase (CAT), and myeloperoxidase (MPO) activities were determined in the kidney issue. Results: Increased MDA levels and MPO activity and decreased GSH level and SOD and CAT activities due to sepsis were reversed by the AGE. TF activity did not change in sepsis. Shortened clot formation time shows increased TF activity. Accordingly, kidney TF activity significantly increased in mice in the pre-treated garlic group. Conclusion: AGE usage should be considered in developing new sepsis treatment strategies in terms of oxidant and antioxidant balance. 

___

  • 1. Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134: 139-55. [CrossRef] 2. Ricci Z, Polito A, Ronco C. The implications and management of septic acute kidney injury. Nat Rev Nephrol 2011; 7: 218-25. [CrossRef] 3. Macdonald, J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis. Br J Anaesth 2003; 90: 221-32. [CrossRef] 4. Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR. Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 1995; 23: 646-51. [CrossRef] 5. Zimmermann JJ. Defining the role of oxyradicals in the pathogenesis of sepsis. Crit Care Med 1995; 23: 616-7. [CrossRef] 6. Ritter C, Andrades M, Frota Júnior ML, Bonatto F, Pinho RA, Polydoro M, et al. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med 2003; 29: 1782-9. [CrossRef] 7. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 2009; 4: 31-6. [CrossRef] 8. B Darbyshire, RJ Henry. Differences in fructan content and synthesis in some Allium species. New Phytol 1981; 87: 249-56. [CrossRef] 9. Cutler RR, Wilson P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci 2004; 61: 71-4. [CrossRef] 10. Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect 1999; 1: 125-9. [CrossRef] 11. Augusti KT, Sheela CG. Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experimentia 1996; 52: 115-20. [CrossRef] 12. Iqbal M, Athar M. Attenuation of iron-nitrilotriacetate (Fe-NTA)-mediated renal oxidative stress, toxicity and hyperproliferative response by the prophylatic treatment of rats with garlic oil. Food Chem Toxicol 1998; 36: 485-95. [CrossRef] 13. Prasad K, Laxdal VA, Yu M, Raney BL. Evaluation of hydroxyl radical-scavenging property of garlic. Mol Cell Biochem 1996; 154: 55-63. [CrossRef] 14. Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochem Biophys Acta 1998; 1379: 233-44. [CrossRef] 15. Sener G, Satiroglu H, Ozer Sehirli A, Kaçmaz A. Protective effect of aqueous garlic extract against oxidative organ damage in a rat model of thermal injury. Life Sci 2003; 73: 81-91. [CrossRef] 16. Batirel HF, Aktan S, Aykut C, Yeğen BC, Coşkun T. The effect of aqueous garlic extract on the levels of arachidonic acid metabolites (leukotriene C4 and prostoglandin E2) in rat forebrain after ischemia- reperfusion injury. Prostaglandins Leukot Essent Fatty Acids 1996; 54: 289-92. [CrossRef] 17. Fujimura N, Sumita S, Aimono M, Masuda Y, Shichinohe Y, Narimatsu E, et al. Effect of free radical scavengers on diaphragmatic contractility in septic peritonitis. Am J Respir Crit Care Med 2000; 162: 2159-65. [CrossRef ] İpekçi et al. Garlic and Kidney Injury in Sepsis Clin Exp Health Sci 2017; 7(1): 15-9 18 18. Yagi K. Assay for blood plasma or serum. Method Enzymol 1984; 105: 328-37. [CrossRef] 19. Beutler E. Gluthatione: red cell metabolism. In: A manual biochemical methods. New York: Grune and Stratton; 1975. p.112-4. 20. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 1986; 82: 512-20. [CrossRef] 21. Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods 1990; 24: 285-95. [CrossRef] 22. Aebi H. Catalase in vitro. In: Bergmeye HU, editor. Methods of enzymatic analysis. Wenheim: Verlag Chemie; 1974. p.121-6. [CrossRef] 23. Ingram GI, Hills M. Reference method for the one-stage prothrombin time test on human blood. International committee for standardization in hematology. Thromb Haemost 1976; 36: 237-8. 24. Borek C. Antioxidant health effects of aged garlic extract. J Nutr 2001; 131: 1010S-5S. 25. Parmar A, Langenberg C, Wan L, May CN, Bellomo R, Bagshaw SM. Epidemiology of septic acute kidney injury. Curr Drug Targets 2009; 10: 1169- 78. [CrossRef] 26. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med 1999; 340: 207-14. [CrossRef] 27. Johnston RB Jr, Keele BB Jr, Misra HP, Lehmeyer JE, Webb LS, Baehner RL, et al. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest 1975; 55: 1357-72. [CrossRef] 28. Ross D. Glutathione, free radicals and chemotherapeutic agents. Mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther 1988; 37: 231-49. [CrossRef] 29. Klebanoff SJ. Myeloperoxidase. Proc Assoc Am Physicians 1999; 111: 383- 9. 30. Witkowski M, Landmesser U, Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc Med 2016; 26: 297-303.[CrossRef]
Clinical and Experimental Health Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: Marmara Üniversitesi