Sıçanda endotoksemiye bağlı çoklu organ hasarında kolinerjik anti-inflamatuvar yolun rolü

Amaç: Sıçanda sepsise bağlı çoklu organ hasarında kolinerjik anti-inflamatuvar yolun rolünü araştırmak ve patojenezde indüklenebilir nitrik oksit sentaz (iNOS) ve siklooksijenaz (COX)-2 enzimlerinin etkileşimini incelemektir.Yöntemler: Sprague-Dawley sıçanlara lipopolisakkarid (LPS) (10 mg/kg; intraperitoneal) uygulanarak sepsis oluşturuldu. Tedavi gruplarına, LPS öncesi 3 gün süreyle nikotin (0.1 mg/kg; intraperitoneal) tek başına veya nikotinik reseptör antagonisti mekamilamin (3 mg/kg; subkutan), selektif iNOS inhibitörü aminoguanidin (8 mg/kg; intraperitoneal) veya selektif COX-2 inhibitörü nimesulid (8 mg/kg; intraperitoneal) ile birlikte uygulandı. LPS’den 6 saat sonra dekapite edilen sıçanların karaciğer, böbrek ve akciğer örneklerinde malondialdehid (MDA), glutatyon (GSH), myeloperoksidaz (MPO) aktivitesi, kemiluminisans ölçümleri ve hasar skorlaması yapıldı. Kanda alanin transaminaz (ALT), aspartat aminotransferaz (AST) ve üre azotu (BUN) ölçüldü. Bulgular: Sepsis kanda ALT (p<0.05), AST (p<0.01) ve BUN (p<0.001) düzeylerinde artışa, karaciğer, böbrek ve akciğerde MDA’da yükselmeye (sırası ile, p<0.01, p<0.05 ve p<0.05), MPO’da artışa (sırası ile, p<0.01, p<0.05 ve p<0.001), GSH’da azalmaya (karaciğer için p<0.01, böbrek için p<0.01) ve kemiluminisansta artışa (luminol her üç doku için p<0.001; lusigenin karaciğer için p<0.001, böbrek ve akciğer için p<0.01) neden oldu. Nikotin ALT, AST ve BUN düzeylerindeki yükselmeyi (her üç parametre için p<0.05), karaciğer ve böbrekte MDA artışını (sırası ile, p<0.05 ve p<0.05), GSH’daki azalmayı (sırası ile, p<0.01 ve p<0.01), doku hasarını (sırası ile, p<0.05 ve p<0.05) ve MPO artışını (karaciğer için p<0.05, böbrek için p<0.01 ve akciğer için p<0.01) engelledi. Nikotinin yararlı etkileri diğer tedaviler varlığında devam etme eğilimi gösterdi. Sonuç: Nikotin tedavisi sepsise bağlı karaciğer, böbrek ve akciğer hasarını olasılıkla iNOS ve COX-2 enzim sistemlerinden bağımsız mekanizmalarla korumaktadır.

Role of the cholinergic anti-inflammatory pathway in endotoxemia-induced multi-organ damage in the rat

Objective: To investigate the role of the cholinergic anti-inflammatory pathway and interaction of inducible nitric oxide (iNOS) and cycloxygenase (COX)-2 in organ dysfunction in rat sepsis. Methods: Lipopolysaccharide (LPS) (10 mg/kg; intraperitoneally) was given to Sprague-Dawley rats to induce sepsis. Groups were treated with nicotine alone or with nicotinic receptor antagonist mecamylamine (3 mg/kg; subcutaneously), selective iNOS inhibitor aminoguanidine (8 mg/kg; intraperitoneally) or selective COX-2 inhibitor nimesulide (8 mg/kg; intraperitoneally). Six hours after LPS, liver, kidney and lung samples were obtained for malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO), chemiluminescence assays and microscopic evaluation and blood was obtained for alanine transaminase (ALT), aspartate aminotransferase (AST) and blood urea nitrogen (BUN) assays. Results: Sepsis increased ALT (p<0.05), AST (p<0.01) and BUN (p<0.001), tissue MDA (p<0.01 for liver and p<0.05, for kidney and lung), tissue MPO (p<0.01, for liver; p<0.05, for kidney; p<0.001, for lung) and chemiluminescence (luminol p<0.001, for all tissues; lucigenin p<0.001 for liver and p<0.01 for kidney and lung) while decreasing GSH (p<0.01, for liver and kidney) compared to control. Nicotine prevented the increase in ALT, AST and BUN (p<0.05, for each), increase in liver and renal MDA (p<0.05, for each), consumption of GSH (p<0.01, for liver and kidney), injury score (p<0.05, for liver and kidney) and increased MPO (p<0.05, for liver and p<0.01, for kidney and lung). Beneficial effects of nicotine seemed to persist in the presence of other therapies.Conclusions: Nicotine in sepsis protects the tissues partially via activation of the cholinergic anti-inflammatory pathway independently of the iNOS and COX-2.

___

  • Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003; 348: 138-150.
  • Klijn E, Den Uil CA, Bakker J, Ince C. The heterogeneity of the microcirculation in critical illness. Clin Chest Med. 2008; 29: 643–654.
  • Cauwels A. Nitric oxide in shock. Kidney Int. 2007; 72: 557–565.
  • Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, Tracey KJ. Cholinergic anti-inflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg. 2002; 36(6): 1231-1236.
  • Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, Squadrito G, Minutoli L, Bertolini A, Marini R, Adamo EB, Venuti FS, Squadrito F. Efferent vagal fiber stimulation blunts nuclear factor- kappa B activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003; 107: 1189-1194.
  • van Westerloo DJ, Giebelen IA, Florquin S, Daalhuisen J, Bruno MJ, de Vos AF, Tracey KJ, van der Poll T. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis. 2005; 191(12): 2138-2148.
  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003; 421: 384-388.
  • Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, Gupta N, Matthay MA. Activation of the alpha7nAChR reduces acid-induced acute lung injury in mice and rats. Am J Respir Cell Mol Biol. 2007; 37(2): 186-192.
  • Bencherif M, Lippiello PM, Lucas R, Marrero MB. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci. 2011; 68(6): 931-949.
  • Li J, Mathieu SL, Harris R, Ji J, Anderson DJ, Malysz J, Bunnelle WH, Waring JF, Marsh KC, Murtaza A, Olson LM, Gopalakrishnan M. Role of α7 nicotinic acetylcholine receptors in regulating tumor necrosis factor-α (TNF-α) as revealed by subtype selective agonists. J Neuroimmunol. 2011; 239(1-2): 37-43.
  • de Jonge WJ1, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005; 6: 844-851.
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991; 43: 109- 142.
  • Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. The FASEB J. 1998; 12: 1063-1073.
  • Napoli C, Crimi E, Williams-Ignarro S, Nigris F, Ignarro LJ. Chapter 23. Nitric Oxide, Oxidative Stress, Immune Response and Critical Care. In: Ignarro LJ, eds. Nitric Oxide: Biology and Pathobiology. Academic Press; 2009. p. 755-772.
  • Awad SS. State-of-the-art therapy for severe sepsis and multisystem organ dysfunction. Am J Surg. 2003; 186: 23-30.
  • Virdis A, Colucci R, Fornai M, Blandizzi C, Duranti E, Pinto S, Bernardini N, Segnani C, Antonioli L, Taddei S, Salvetti A, Del Tacca M. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric- oxide synthase and oxidative stress. J Pharmacol Exp Ther. 2005; 312(3): 945-953.
  • Levy RM, Prince JM, Billiar TR. Nitric oxide: a clinical primer. Crit Care Med. 2005; 33: 492-495.
  • Ellis CG, Jagger J, Sharpe M. The microcirculation as a functional system. Crit Care. 2005; 9: 3-8.
  • Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: microvascular dysfunction in sepsis –hemodynamics, oxygen transport, and nitric oxide. Crit Care. 2003; 7: 359-373.
  • Trzeciak S, Cinel I, Philip Dellinger R, Shapiro NI, Arnold R, Parrillo JE, Hollenberg SM, Microcirculatory Alterations in Resuscitation and Shock (MARS) Investigators. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med. 2008; 15: 399-413.
  • Wu KK. Inducible cyclooxygenase and nitric oxide synthase. Adv Pharmacol. 1995; 33: 179-207.
  • Casini A, Ferrali M, Pompella AS, Maellaro E, Comporti M. Lipid peroxidation and cellular damage in extra hepatic tissues of bromobenzene intoxicated mice. Am J Pathol. 1986; 123: 520-531.
  • Aykac G, Uysal M, Yalcin AS, Kocak-Toker N, Sivas A, Oz H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione peroxidase and glutathione transferase in rat. Toxicology. 1985; 46: 71-76.
  • Bradley PP, Preibat D, Christerser RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982; 78: 206-209.
  • Haklar G, Ulukaya-Durakbasa C, Yuksel M, Dagli T, Yalcin AS. Oxygen radicals and nitric oxide in rat mesenteric ischemia-reperfusion: modulation by l-arginine and N-nitro-L-arginine methyl ester. Clin Exp Pharmacol Physiol. 1998; 25: 908-912.
  • Sener G, Toklu H, Kapucu C, Ercan F, Erkanli G, Kaçmaz A, Tilki M, Yeğen BC. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surg Today. 2005; 35(1): 52-59.
  • Neviere RR, Cepinskas G, Madorin WS, Hoque N, Karmazyn M, Sibbald WJ, Kvietys PR. LPS pretreatment ameliorates peritonitis-induced myocardial inflammation and dysfunction: role of myocytes. Am J Physiol. 1999; 277: H885-892.
  • Sato M, Maulik N, Das DK. Cardioprotection with alcohol: role of both alcohol and polyphenolic antioxidants. Ann NY Acad Sci. 2002; 957:122-135.
  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405: 458-462.
  • Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002; 195: 781- 788.
  • Mioni C, Bazzani C, Giuliani D, Altavilla D, Leone S, Ferrari A, Minutoli L, Bitto A, Marini H, Zaffe D, Botticelli AR, Iannone A, Tomasi A, Bigiani A, Bertolini A, Squadrito F, Guarini S. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Crit Care Med. 2005; 33: 2621- 2628.
  • Altavilla D, Guarini S, Bitto A, Mioni C, Giuliani D, Bigiani A, Squadrito G, Minutoli L, Venuti FS, Messineo F, De Meo V, Bazzani C, Squadrito F. Activation of the cholinergic antiinflammatory pathway reduces NF-kappa b activation, blunts TNF-alpha production, and protects against splanchic artery occlusion shock. Shock. 2006; 25: 500-506.
  • Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, Squadrito G, Minutoli L, Bertolini A, Marini R, Adamo EB, Venuti FS, Squadrito F. Efferent vagal fibre stimulation blunts nuclear factor- kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003; 107: 1189-1194.
  • De Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DUJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005; 6: 844-851.
  • Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, Tracey KJ. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci. 2000; 85: 141- 147.
  • van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, Tracey KJ, van der Poll T. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology. 2006; 130: 1822-1830.
  • Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, Al-Abed Y, Metz CN. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005; 201: 1113-1123.
  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421: 384-388.
  • Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, Tracey KJ, Ulloa L. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004; 10: 1216-1221.