NSAİİ’ ların Analjezik Etkilerinde TRP ve K+ İyon Kanallarının Rolü

Amaç: Seçici olmayan TRP kanal blokörü rutenyum kırmızısı ve voltaj bağımlı K+ kanal blokörü XE 991 varlığında diklofenak, ketoprofen, etodolak ve dipironun analjezik etkilerine TRP’nin ve voltaj bağımlı K+kanallarının olası katkılarının incelenmesi amaçlanmıştır. Yöntemler: Rutenyum kırmızısı (RR) (3 mg / kg, ip) ve XE 991 (1 mg / kg, ip) varlığında, diklofenak (50 mg / kg, ip), ketoprofen (50 mg / kg, ip), etodolak (70 mg / kg, ip) ve dipironun (500 mg / kg, ip) antinosiseptif etkilerindeki değişiklikler, farelerde sıcak plaka, kuyruk daldırma ve kıvranma testlerinde araştırıldı. Bulgular: Kuyruk daldırma testinde RR uygulaması sonucu sadece dipiron, etodolak ve ketoprofen’in analjezik etkisinde anlamlı bir geri dönüş sağlanmıştır. Sıcak plaka testinde ise sadece dipiron’un analjezik etkisinde belirgin bir geri dönüş görülmektedir. XE 991 uygulanması kuyruk daldırma testinde dipiron ve etodolak’ın etkisinde anlamlı bir geri dönüş sağlarken, ketoprofen ve diklofenak’ın etkisinde göreceli bir geri dönüş sağlamaktadır. Sıcak plaka testinde ise sadece ketoprofen’in analjezik etkisinde anlamlı bir geri dönüş sağlarken, test edilen diğer non-steroidal antiinflamtuvar ilaçların (NSAİİ) etkisinde göreceli bir geri dönüş sağlamaktadır. Writhing testinde ise ne RR uygulamasında ne de XE 991 uygulaması sonucunda önemli bir değişiklik olmamıştır. Sonuç: Çalışmamızdan elde edilen sonuçlara göre NSAİİ’ın santral analjezik etkisinde TRP ve potasyum kanal modülasyonunun katkısının olabileceği düşünülmektedir. Bu projede kullanılan ve klinikte ağrı üzerine etkileri bilinen farmakolojik ajanların farklı etki mekanizmalarının aydınlatılmış olması, terapötik yaklaşımlara katkı sağlamakla birlikte yeni ilaç geliştirme çalışmalarında da yol gösterici olacağı düşünülmektedir.

The Role of TRP and K+Ion Channels in Analgesic Effect of NSAIDs

Objective: We aimed to clarify the possible contributions of TRP and voltagedependent K+ channels to the analgesic effects of diclofenac, ketoprofen, etodolac,and dipyrone using the nonselective TRP channel blocker ruthenium red and thevoltage-dependent K+ channel blocker (Kv7; KCNQ) XE 991, respectively.Methods: We assessed the changes in the antinociceptive effects of diclofenac (50mg/kg, i.p.), ketoprofen (50 mg/kg, i.p.), etodolac (70 mg/kg, i.p.), and dipyrone (500mg/kg, i.p.) using ruthenium red (3 mg/kg, i.p.) and XE 991 (1 mg/kg, i.p.) beforetreatment in the hot plate, tail immersion, and writhing tests in mice.Results: In the tail immersion test, ruthenium red administration resulted in asignificant reversal in the analgesic effects of dipyrone, etodolac, and ketoprofen. Inthe hot plate test, a significant reversal was observed in the analgesic effect of onlydipyrone. In the tail immersion test, the administration of XE 991 induced a significantreversal in the analgesic effects of dipyrone and etodolac and a relative reversal in theanalgesic effects of ketoprofen and diclofenac. In the hot plate test, XE 991 produceda significant reversal in the analgesic effect of only ketoprofen, whereas it caused arelative reversal in the analgesic effects of other tested nonsteroidal anti-inflammatorydrugs (NSAIDs). In the writhing test, no significant change was observed after eitherXE 991 or ruthenium red administration.Concusions: Modulation of TRP and K+ channels may be involved in the centralanalgesic effects of NSAIDs. The clarification of different action mechanisms ofNSAIDs will contribute to new therapeutic approaches and provide guidance for newdrug development studies.

___

  • [1] Ren K, Dubner R. Inflammatory Models of Pain and Hyperalgesia. ILAR J 1999; 40: 111-8.
  • [2] Steeds CE. The anatomy and physiology of pain. Surgery 2009; 27: 507‑11.
  • [3] Beissner F, Brandau A, Henke C, Felden L, Baumgärtner U, Treede RD, et al. Quick Discrimination of Adelta and C Fiber Mediated Pain Based on Three Verbal Descriptors. PLoS One 2010; 5(9): e12944.
  • [4] Patapoutian A, Tate S, Woolf JC. Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 2009; 8(1): 55-68.
  • [5] Yazğan B, Yazğan Y, Nazıroğlu M. Ağrı Moleküler Yolaklarında TRPV1 Katyon Kanalının Önemi. Fırat Tıp Derg/Firat Med J 2016; 21(1): 1-10.
  • [6] Premkumar LS, Abooj M. TRP channels and analgesia. Life Sci 2013; 19; 92(8-9): 415-24.
  • [7] Marwaha L, Bansal Y, Singh R, Saroj P, Bhandari R, Kuhad A. TRP channels: potential drug target for neuropathic pain. Inflammopharmacology 2016; 24: 305-317.
  • [8] Munro G, Dalby-Brown W. Kv7 (KCNQ) channel modulators and neuropathic pain. J Med Chem 2007; 50: 2576-2582.
  • [9] Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol 2009; 156(8): 1185–95.
  • [10] Ortiz MI, Granados-Soto V, Castañeda-Hernández G. The NOcGMP-K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacol Biochem Behav 2003; 76(1): 187-95.
  • [11] Yalcın I, Aksu F. Involvement of potassium channels and nitric oxide in tramadol antinociception. Pharmacol Biochem Behav 2004; 80(1): 69-75.
  • [12] Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci 2003; 6;23(18): 7227-36.
  • [13] Du X, Gamper N. Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential. Current Neuropharmacol 2013; 11: 621-640.
  • [14] Miranda HF, Lemus I, Pinardi G. Effect of the inhibition of serotonin biosynthesis on the antinociception induced by nonsteroidal antiinflammatory drugs. Brain Res. Bull 2003; 61: 417 – 425.
  • [15] Sandrini M, Pini LA, Vitale G. Differential involvement of central 5-HT1B and 5-HT3 receptor subtypes in the antinociceptive effect of paracetamol. Inflamm Res 2003; 52: 347-352.
  • [16] Arslan R, Bektaş N. Evaluation of the Centrally-Acting Mechanisms of Some Non-Steroidal Anti – inflammatory Drugs. Am. J. Pharm Health Res 2015; 3(6): 190-202.
  • [17] Bi Y, Chen H, Su J, Cao X, Bian X, Wang K. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/Mcurrent in mice. Mol Pain 2011; 7: 84.
  • [18] Córdovaa MM, Fernanda de Paula Wernerb M, Duarte da Silva M, Paula Ruanic A, Geraldo Pizzolatti M, Santosa A.R.S. Further antinociceptive effects of myricitrin in chemical models of overt nociception in mice. Neuroscience Letters 2011; 495: 173–177.
  • [19] Eddy NB, Leimback D. Synthetic analgesics II. Dithienylbutenyl and dithienylbutylamines. J. Pharmacol. Exp. Ther 1953; 107: 385-393.
  • [20] Bastos GNT, Santos ARS, Ferreira VMM, Costa AMR, Bispo CI, Silveira, AJA, et al. Antinociceptive effect of aqueous extract obtained from roots of Physalis angulata L. On mice, J. Ethnopharmacol 2006; 103: 241–245.
  • [21] Schmauss C, Yaksh TL. In vivo studies on spinal receptor systems mediating antinociception II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther 1984; 228: 1–12.
  • [22] Aydın S, Beis R, Can ÖD. Analgesic and antispasmodic activities of 2-(2 nitro-phenyl)-1H – benzimidazole 5-carboxylic acid: evidence for the importance of the 2-(o-substitutedphenyl) group, Pharmazie 2003; 58: 405–408.
  • [23] Koster R, Anderson M, Beer EJ. Acetic acid for analgesic screening. Fed. Proc 1959; 18: 412.
  • [24] Shimoyama M, Szeto HH, Schiller PW, Tagaito Y, Tokairin H, Eun Cm, et al. Differential Analgesic Effects of a Mu-Opioid Peptide, [Dmt1] DALDA, and Morphine. Pharmacology 2009; 83(1): 33-7.
  • [25] Cashman JN. The mechanisms of action of NSAIDs in analgesia. Drugs 1996; 52 Suppl 5: 13-23.
  • [26] Xu W, Wu Y, Bi Y, Tan L, Gan Y, Wang KW. Activation of voltagegated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats. Mol Pain 2010; 6: 49.
  • [27] Day RO, Graham GG. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ 2013; 346: f3195.
  • [28] Auriel E, Regev K, Korczyn AD. Nonsteroidal anti-inflammatory drugs exposure and the central nervous system. Handb Clin Neurol 2014; 119: 577-84.
  • [29] Ocaña M, Cendán CM, Cobos EJ, Entrena JM, Baeyens JM. Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 2004; 500(1-3): 203-19.
  • [30] Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015; 72: 3677–3693.
  • [31] Barkai O, Goldstein RH, Caspi Y, Katz B, Lev S, Binshtok AM. The Role of Kv7/M Potassium Channels in Controlling Ectopic Firing in Nociceptors. Front Mol Neurosci 2017; 10: 181.
  • [32] Tsantoulas C, McMahon SB. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 2014; 37(3): 146-58.
  • [33] Wang JJ, Li Y. KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacologica Sinica 2016; 37: 25–33.
  • [34] Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, Shabat D, et al. Meclofenamic Acid and Diclofenac, Novel Templates of KCNQ2/Q3 Potassium Channel Openers, Depress Cortical Neuron Activity and Exhibit Anticonvulsant Properties. Mol Pharmacol 2005; 67: 1053– 1066.
  • [35] Wulff H, Castle NA, Pardo LA. Voltage-gated Potassium Channels as Therapeutic Drug Targets. Nat Rev Drug Discov 2009; 8: 982-1001.
  • [36] Blackburn-Munro G, Jensen BS. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol 2003; 24; 460(2-3): 109-16.
  • [37] Dost R, Rostock A, Rundfeldt C. The anti-hyperalgesic activity of retigabine is mediated by KCNQ potassium channel activation. Naunyn Schmiedebergs Arch Pharmacol 2004; 369(4): 382-90.
  • [38] Schwarz JR, Glassmeier G, Cooper EC, Kao TC, Nodera H, Tabuena D, et al. KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol 2006; 573(1): 17–34.
  • [39] Hirano K, Kuratani K, Fujiyoshi M, Tashiro N, Hayashi E, Kinoshita M. Kv7.2-7.5 voltage-gated potassium channel (KCNQ2-5) opener, retigabine, reduces capsaicin-induced visceral pain in mice. Neurosci Lett 2007; 14; 413(2): 159-62.
  • [40] Gwanyanya A, Macianskieneb R, Mubagwac K. Insights into the effects of diclofenac and other non-steroidal anti-inflammatory agents on ion channels. J Pharm Pharmacol 2012; 64(10): 1359 – 75.
  • [41] Nozadze I, Tsiklauri N, Gurtskaia G, Tsagareli MG. NSAIDs attenuate hyperalgesia induced by TRP channel activation. Data in Brief 2016; 6: 668–673.
  • [42] Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, et al. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch 2010; 459(4): 579-92.
  • [43] Biggs JE, Stemkowski PL, Knaus EE, Chowdhury MA, Ballanyi K, Smith PA. Suppression of network activity in dorsal horn by gabapentin permeation of TRPV1 channels: implications for drug access to cytoplasmic targets. Neurosci Lett 2015; 1; 584: 397-402.