TÜRKİYE’DE ELEKTRİKLİ VE HİBRİT ARAÇLAR İÇİN ACİL MÜDAHALE YAKLAŞIMLARI

Günlük hayatta, trafikte kullanımı artan elektrikli ve hibrit araçlar, olası trafik kazaları için önemli bir risk teşkil etmektedir. Elektrikli ve hibrit araçların dahil olduğu kaza durumlarında meydana gelecek mekanik deformasyonlar nedeniyle ve/veya kimi zaman yeterli bakım & onarım süreçlerinin işletilemediği durumlarda, yüksek gerilim tahrik bataryalarından kaynaklı yangınlarla karşılaşılma riski bulunmaktadır. Söz konusu risk, genellikle yüksek gerilim tahrik bataryasına ait hücrelerin mekanik, termal veya elektriksel açıdan tanımlanan çalışma aralığının dışında bir duruma maruz kalmasından kaynaklanmaktadır. Bu durumlar beraberinde sıcaklığının yükselmesine, dolayısıyla batarya hücrelerinin de ısınmasına yol açmaktadır. Bu sıcaklık artışı, hücrelerdeki istenmeyen kimyasal reaksiyonları da hızlandırarak daha yüksek sıcaklık seviyelerine ulaşılmasına; sonrasında yüksek gerilim tahrik bataryalarında kendi kendini güçlendiren ve durdurulamaz bir kimyasal reaksiyon döngüsüne girmesine neden olmaktadır. Benzer bir süreçte yaşanacak sadece bir hücre bazındaki termal kaçak durumu dahi diğer bütün modüllere sirayet edebilen, hatta tahrik bataryasını tamamen etkiyebilecek termal risklerle karşı karşıya kalınmasına etken olunmaktadır. Bu durumun elektrikli ve hibrit araçlara esas başlıca güvenlik tehlikeleri arasında yer aldığı bilinmektedir. İşbu çalışma ile Türkiye’de elektrikli ve hibrit araçlara özel etkin ve yerinde acil müdahale ve kurtarma hizmetleri konusunda dikkat edilmesi gereken hususlar ve uygulanacak doğru yöntemler ortaya konulmuştur.

___

  • Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. 2019. Available online: http://data.europa.eu/eli/reg/2019/631/oj (accessed on 3 April 2022)
  • Europäische Kommission. Saubere Mobilität: Parlament und EU-Staaten Einig über Neue CO2-Grenzwerte für Autos. Available online: https://ec.europa.eu/germany/news/20181218-co2-grenzwerte-autos_de (accessed on 3 April 2022).
  • Miller J.; (2022); European sales of electric cars overtake diesel models for first time, Joe Miller in Frankfurt January 16 2022, Financial Times
  • Durlak A. (2022). 2021 Yılında Elektrikli ve Hibrit Otomobil Satışları Katlandı, Anadolu Ajansı Available online: https://www.aa.com.tr/tr/ekonomi/2021de-elektrikli-ve-hibrit-otomobil-satislari katlandi/2467733#:~:text=T%C3%BCrkiye'de%20ge%C3%A7en%20y%C4%B1l%20elektrikli,alan%20%C3%BC%C3%A7%C3%BCnc%C3%BC%20motor%20tipi%20ol.( (accessed on 23 April 2022).
  • Sabancı Üniversitesi İstanbul Uluslararası Enerji ve İklim Merkezi. (2021), Türkiye Enerji Görünümü. Available online: https://iicec.sabanciuniv.edu/sites/iicec.sabanciuniv.edu/files/inline-files/4-teo_executive_summary-unprotected_v.pdf
  • Trafik Kazalari Eğitim Kitabi (2014). İstanbul: İstanbul Büyükşehir Belediyesi Yayınları
  • UNECE Regulation No. 12. Agreement Concerning the Adoption of Uniform Conditions of Approval and Reciprocal Recognition of Approval for Motor Vehicle Equipment and Parts: Addendum 11: Regulation No. 12; UN: Geneva, Switzerland, 2012.
  • Deutsche Gesetzliche Unfallversicherung e.V., (DGUV). DGUV Information 8686 Qualifizierung für Arbeiten an Fahrzeugen mit Hochvoltsystemen. April 2012. Available online: https://publikationen.dguv.de/widgets/pdf/download/article/889 (accessed on 15 February 2021).
  • Suarez, C., & Martinez, W. (2019, September). Fast and ultra-fast charging for battery electric [vehicles–a review. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 569-575). IEEE.
  • Porsche, A.G. Taycan 4S. Available online: https://www.porsche.com/germany/models/taycan/taycan-models/taycan-4s/(accessed on 15 January 2022).
  • Nedelea, A. Hyundai Ioniq 5 Electric Crossover Teased Ahead of Imminent Reveal. Available online: https://insideevs.com/news/465953/hyundai-ioniq-5-ev-teased-before-launch/ (accessed on 15 January 2022).
  • Wang, Z.; Shi, S.; Liu, P. Research Progress on Collision Safety of Electric Vehicles. In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, China, 6–7 January 2011; pp. 153–156.
  • Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sour. 2003, 113, 81–100. Spotnitz, R.M.; Weaver, J.; Yeduvaka, G.; Doughty, D.H.; Roth, E.P. Simulation of abuse tolerance of lithium-ion battery packs. J. Power Sour. 2007, 163, 1080–1086.
  • Wisch, M.; Ott, J.; Thomson, R.; Léost, Y.; Abert, M.; Yao, J. Recommendations and Guidelines for Battery Crash Safety and Post-Crash Safe Handling. EVERSAFE—Everyday Safety for Electric Vehicles. 2014. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1367933&dswid=-7667 (accessed on 20 March 2022).
  • Global Technical Regulation on the Electric Vehicle Safety (EVS): Addendum 20 2018. Available online: https://unece.org/transport/standards/transport/vehicle-regulations-wp29/global-technical-regulations-gtrs (accessed on 19 August 2020).
  • UNECE Regulation No. 94 Agreement Concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of These Prescriptions: Addendum 93: Regulation No. 94, 3rd ed.; UN: Geneva, Switzerland, 2017.
  • UNECE Regulation No. 95. Agreement Concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of These Prescriptions: Addendum 94: Regulation No. 95, 2nd ed.; UN: Geneva, Switzerland, 2014.
  • Wöhrl, K., Geisbauer, C., Nebl, C., Lott, S., & Schweiger, H. G. (2021). Crashed electric vehicle handling and recommendations—state of the art in Germany. Energies, 14(4), 1040.
  • VDA Verband der Automobilindustrie—Project group. Recovery of vehicles with high-voltage systems from accidents. Accident Assistance and Recovery of Vehicles with High-Voltage Systems: Frequently Asked Questions (FAQs). Available online: https://www.vda.de/vda/en/press/press-releases/200806-Accident-assistance--The-automotive-industry-gives-highest-priority-to-collaboration-with-rescue-teams- (accessed on 21 May 2022).
  • Istanbul Metropolitan Municipality Fire Department, Records on Road Accidents, were obtained after the data request requested via CIMER.
  • Larsson, F.; Bertilsson, S.; Furlani, M.; Albinsson, I.; Mellander, B.E. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J. Power Sour. 2018, 373, 220–231.
  • Zhang, J.; Su, L.; Li, Z.; Sun, Y.; Wu, N. The Evolution of Lithium-Ion Cell Thermal Safety with Aging Examined in a Battery Testing Calorimeter. Batteries 2016, 2, 12.
  • Geisbauer, C.; Wöhrl, K.; Mittmann, C.; Schweiger, H.G. Review of Safety Aspects of Calendar Aged Lithium Ion Batteries. J. Electrochem. Soc. 2020, 167, 90523.
  • Sheikh, M., Elmarakbi, A., & Rehman, S. (2017). Thermal and Electrical failure analysis of lithium-ion battery after crash. Karachi, Pakistan, 19–20 May 2017.
  • Sahraei, E.; Campbell, J.; Wierzbicki, T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions. J. Power Sour. 2012, 220, 360–372. Energies 2021, 14, 1040 19 of 21
  • Isidore, C. Volt fire 3 Weeks After Crash Prompts Safety Probe. Available online: https://money.cnn.com/2011/11/11/autos/volt_crash_fire/index.htm (accessed on 20 May 2022).
  • Wojdyla, B. The Straight Story on the Chevy Volt Battery Fire. Available online: https://www.popularmechanics.com/cars/hybrid-electric/a11865/the-straight-story-on-the-chevy-volt-battery-fire-6601217/ (accessed on 20 November 2020).
  • Luo, W.T.; Zhu, S.B.; Gong, J.H.; Zhou, Z. Research and Development of Fire Extinguishing Technology for Power Lithium Batteries. Procedia Eng. 2018, 211, 531–537.
  • Blum, A.; Long, R.T. Full-scale Fire Tests of Electric Drive Vehicle Batteries. SAE Int. J. Passeng. Cars Mech. Syst. 2015, 8, 565–572. Hatai, J.K.; Weber, J.N.; Doizaki, K. Hydrofluoric Acid Burns of the Eye: Report of Possible Delayed Toxicity. J. Toxicol. Cutan.Ocul. Toxicol. 1986, 5, 179–184.
  • Staatliche Feuerwehrschule Würzburg. Alternativ Angetriebene Fahrzeuge. 2017. Available online: https://www.ffw-seukendorf.de/wp-content/uploads/2020/01/Merkblatt.pdf (accessed on 14 September 2020).
  • Wöhrl, K.; Nebl, C.; Lott, S.; Geisbauer, C.; Le Roux, F.; Schweiger, H.-G. Handling of accident-damaged electric vehicles. In Automotive Technologie in Bavaria e-Car + Hydrogen; Media mind GmbH & Co. KG: Munich, Germany, 2020; pp. 16–21. Available online: https://media-mind.info/pdf/2020/automobil_eng_2020.pdf (accessed on 25 November 2020).
  • Doughty, D.; Crafts, C. Freedom CAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications: Sandia Report SAND2005-3123; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2006.
  • Deutsche Gesetzliche Unfallversicherung e.V. (DGUV). Hinweise für die Brandbekämpfung von Lithium-Ionen-Akkus bei Fahrzeugbränden. July 2020. Available online: https://publikationen.dguv.de/widgets/pdf/download/article/3907 (accessedon 24 November 2020).
  • Geib, C.; Nebl, C.; Huber, J.; Schweiger, H.-G. Herausforderung Elektrofahrzeuge: Hilfestellung für den Einsatz. Brandwacht,I/2020; pp. 18–20. Bayerisches Staatsministerium des Innern, für Bau und Verkehr. München. 2020. Available online: https://www.brandwacht.bayern.de/mam/archiv/beitraege_pdf/bw_1_2020_s18_20_e-autos2.pdf (accessed on 24 November 2020).
  • Cabrera-Castillo, E.; Niedermeier, F.; Jossen, A. Calculation of the state of safety (SOS) for lithium ion batteries. J. Power Sour.2016, 324, 509–520.
  • Kagermeier, E. Wie gefährlich sind Brände bei E-Autos wirklich? Available online: https://www.br.de/nachrichten/wissen/wiegefaehrlich-sind-braende-bei-e-autos-wirklich,RoPFuv7 (accessed on 7 September 2020).
Çevre Şehir ve İklim Dergisi-Cover
  • ISSN: 2822-2245
  • Başlangıç: 2022
  • Yayıncı: Çevre Şehircilik ve İklim Değişikliği Bakanlığı
Sayıdaki Diğer Makaleler

Yüzeysel Akış Riskinin Peyzaj Strüktürü Çerçevesinde Değerlendirilmesi. Kastamonu Merkez İlçe Örneği.

Gül Aslı AKSU

Çevresel Sürdürülebilirlik ve Ulaşım Aracı Olarak Bisiklet: İyi Uygulama Örnekleri

Cihan ERÇETİN

MARS’DAN DÜNYA’YA OLASI ANTİK YAŞAMIN İZLERİ: SALDA GÖLÜ MİKROBİYAL EKOLOJİSİ VE KORUNMASI ÜZERİNE DEĞERLENDİRME

Orhan İNCE, H. Abdullah UÇAN, Beyhan OKTAR, Emine Gözde ÖZBAYRAM, Mahmut ALTINBAŞ, Ömer UZUN, İbrahim Cem ÖZSEFİL, Kübra DOYMUŞ, Esra Meryem ATAŞLAR, İbrahim Halil MİRALOĞLU, Aslınur ÇALIŞIYOR, Bahar İNCE

DÜNYADA VE TÜRKİYE’DE ÇEVRE POLİTİKALARI VE SÜRDÜRÜLEBİLİR KALKINMA

Ruşen KELEŞ

ÇEVRE TARİHİ PERSPEKTİFİNDEN SÜRDÜRÜLEBİLİR SU YÖNETİMİNDE ÖRNEK MEDENİYET: OSMANLI DEVLETİ

İbrahim YENİGÜN, Vildan BALCI, Abdullah YENİGÜN, Sinan UYANIK

TÜRKİYE’DE ELEKTRİKLİ VE HİBRİT ARAÇLAR İÇİN ACİL MÜDAHALE YAKLAŞIMLARI

Orhan TOPAL

MARMOD Projesi ile Yeni Oşinografik Yaklaşımlar Işığında Marmara Denizi'nde Oksijensizleşme ve Müsilajın Yayılımı

Evrim KALKAN TEZCAN

MARMARA DENİZİ’NDE DENİZ SALYASI (MÜSİLAJ) OLUŞMA NEDENLERİ VE ALINMASI GEREKEN ÖNLEMLER

Zeki YÜMÜN, Erol KAM, Melike ÖNCE

SÜRDÜRÜLEBİLİR KENTSEL PLANLAMA SÜREÇLERİNDE AKILLI ŞEHİR YAKLAŞIMININ ROLÜ

Nur Sinem PARTİGÖÇ

SÜRDÜRÜLEBİLİR ÜRETİM VE TÜKETİMDE EKO-ETİKETLERİN ÖNEMİ: TÜRKİYE ÇEVRE ETİKET SİSTEMİ

Mehmet Emin BİRPINAR, Serkan ATAY, Ülkü YETİŞ