Peroksimonosülfat (okson)/UV-C fotokimyasal prosesi ile dimetil ftalatın giderimi

Ftalik asit esterleri (ftalatlar) kağıt, karton, kozmetik, deterjan, şampuan, sabun, tıbbi malzeme, plastik kap ve boya üretiminde hammadde veya yardımcı kimyasal madde olarak kullanılmaktadır. Endüstrilerde, malzemelerin esneklik özelliğini arttırmak için kullanılan ftalatlar, toksik özellik gösteren, kanserojen, endokrin bozucu ve birikme potansiyeline sahip maddelerdir. Ftalatların arıtımında konvansiyonel arıtma prosesleri ile yüksek giderme verimleri elde edilememekte ve bu nedenle arıtımlarında adsorpsiyon ve ileri oksidasyon proseslerinden yararlanılmaktadır. Bu çalışma kapsamında endokrin bozucu ve toksik etkileri nedeniyle kullanımlarında yasal düzenlemeler yapılmış ftalatlara örnek teşkil etmek üzere seçilen dimetil ftalat (DMF) model kirleticisinin sulu çözeltisinin fotokimyasal ileri oksidasyon proseslerinden olan peroksimonosülfat (PMS-okson)/UV-C ile arıtımı incelenmiştir. Giriş PMS konsantrasyonunun ve başlanıç pH değerinin proses giderim verimi üzerine etkisi araştırılmış ve prosesin arıtma performansı DMF ve TOK ölçümleri yapılarak değerlendirilmiştir. Gerçekleştirilen deneysel çalışmalarda PMS/UV-C prosesi ile DMF’nin gideriminin birinci dereceden hız kinetiğine uyum sağladığı belirlenmiştir. Belirli bir değere kadar (50mM) artan PMS konsantrasyonu ile DMF giderimi için birinci dereceden hız sabitinin arttığı tespit edilmiştir. En yüksek hız sabiti k40mM= 0.276 L/dk olarak bulunmuştur ve PMS konsantrasyonu 50 mM’a arttırıldığında hız sabiti k50mM= 0.246 L/dk değerine düşmüştür. TOK giderimi incelendiğinde ise artan PMS konsantrasyonu ile tam mineralizasyonun sağlandığı arıtma süreleri azalmaktadır. Optimum PMS konsantrasyonunda (40mM) 40. dakikanın sonunda tam mineralizasyon sağlanmıştır. Elde edilen sonuçlar ışığında DMF gideriminde PMS/UV-C prosesinin uygulanabilir etkin bir arıtma prosesi olduğu sonucuna varılmıştır.

___

  • Anipsitakis, G.P. ve Dionysiou, D.D., (2004). Transition metal/UV-based advanced oxidation technologies for water decontamination, Applied Catalysis B: Environmental, 54, 155-163.
  • Ball D.L. ve Edwards J.O., (1956). The kinetics and mechanism of the decomposition of Caro's acid (Part I), Journal of American Chemical Society, 78, 1125-1129.
  • Bard, A.J., Parsons, R. ve Jordan, J., (1985). Standard potentials in aqueous solution, IUPAC, Decker, New York.
  • Bauer, M.J. ve Herrmann, R., (1997). Estimation of the environmental contamination by phthalic acid esters leaching from household wastes, Science of the Total Environment, 208, 49.
  • Betterton, E.A. ve Hoffmann, M.R. (1990). Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate, Environmental Science and Technology, 24, 1819-1824.
  • Buxton, G., Greenstock, C., Helman, W. ve Ross, A., (1988). Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solutions, Journal of Physical and Chemical Reference Data, 17, 513-886.
  • CCOT, (1995). The AOP Handbook, Calgon Carbon Oxidation Technologies. Markham, Ontario.
  • Chan, K.H. ve Chu, W., (2009). Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process, Water Research., 43, 2513-2521.
  • Chang, E-E., Hsing, H-J., Chiang, P-C., Chen, M-Y. ve Shyng, J-Y., (2008). The chemical and biological characteristics of coke-oven wastewater by ozonation, Journal of Hazardous Materials, 156, 560-567.
  • Chen, W.L. ve Sung, H.H., (2005). The toxic effect of phthalate esters on immune responses of giant freshwater prawn (Macrobrachium rosenbergii) via oral treatment, Aquatic Toxicology, 74, 160.
  • Eberson, L., (1987). Electron transfer reactions in organic chemistry, Spring-Verlag, Berlin.
  • Esplugas, S., Bila, D.M., Krause, L.G.T. ve Dezotti M., (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, Journal of Hazardous Materials, 149, 631-642.
  • Fernandez, J., Maruthamuthu, P., Renken, A. ve Kiwi, J., (2004). Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton-like processes, Applied Catalysis B: Environmental, 49, 207-215.
  • Hayon, E. ve Dogliotti, L., (1967). Flash photolysis of persulfate ions in aqueous solutions. Study of the sulfate and ozonide radical anions, The Journal of Physical Chemistry, 71, 2511-2516.
  • Hayon, E., Treinin, A. ve Wilf, J., (1972). Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-isulfite-pyrosulfite systems. SO2− , SO3−, SO4− and SO5− radicals, Journal of American Chemical Society, 94, 47-57.
  • Heudorf, U., Mersch-Sundermann, V. ve Angerer, J., (2007). Phthalates: Toxicology and exposure, International Journal of Hygiene and Environmental Health, 210, 623-634.
  • Huang, Y.F. ve Huang, Y.H., (2009). Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process, Journal of Hazardous Materials, 167, 418-426.
  • Liang, C.J., Lee, I.L., Hsu, I.Y., Liang, C.P. ve Lin, Y.L., (2008). Persulfate oxidation of trichloroethylene with and without iron activation in porous media, Chemosphere, 70, 426-435.
  • Lu, Y., Tang, F., Wang, Y., Zhao, J., Zeng, X., Luo, Q. ve Wang, L., (2009). Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge, Journal of Hazardous Materials, 168, 938-943.
  • Madhavan, J., Maruthamuthu, P., Murugesan, S. ve Ashokkumar, M., (2009). Kinetics of degradation of acid red 88 in the presence of Co2+- ion/peroxomonosulphate reagent, Applied Catalysis A: General., 368, 35-39.
  • Neta, P., Huie, R.E. ve Ross, A.B., (1988). Rate Constants for Reactions of Inorganic Radicals in Aqueous Solutions, Journal of Physical and Chemical Reference Data, 17, 1027.
  • Nicole, I., De Laat, J., Dore, M., Duguet, J. P. ve Bonnel, C., (1990). Utilisation du rayonnement ultraviolet dans le traitement de eaux : Measure du flux photonique par actinometrie chimique au peroxide d’hydrogene, Water Research, 24, 157- 168.
  • Ölmez-Hanci, T., Imren, C., Arslan-Alaton, I., Kabdaşlı, I. ve Tünay, O., (2009). H2O2/UV-C oxidation of potential endocrine disrupting compounds: A case study with dimethyl phthalate, Photochemical and Photobiological Sciences, 8, 5, 620-627.
  • Petterson, J.W., (1985). Industrial wastewater treatment technology, 2nd edition, Butterworth, Boston,. Peyton, G.R., (1993). The free-radical chemistry of persulfate-based total organic carbon analyzers, Marine Chemistry,41, 91-103.
  • Sánchez-Avila, J., Bonet, J., Velasco, G. ve Lacorte, S., (2009). Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant, Science of the Total Environment, 407, 4157-4167.
  • Soo Oh B., Jung Y., Oh Y., Yoo Y. ve Kang, J., (2006). Application of ozone, UV and ozone/UV processes to reduce diethyl phtalate and its estrogenic activity, Science of the Total Environment, 367, 681-693.
  • Sun, J., Li, X., Feng, J. ve Tian, X., (2009). Oxone/Co2+ oxidation as an advanced oxidation process: Comparison with traditional Fenton oxidation for treatment of landfill leachate, Water Research, 43, 4363-4369.
  • Wongniramaikul W., Liao C. ve Kanathanara, P., (2007). Diisobutyl phthalate degradation by Fenton treatment, Journal of Environmental Science and Health, Part A:42567-572.
  • Xua, B., Gao, N.Y., Sun, X.F., Xia, S.J., Rui, M., Simonnot, M.O., Causserand, C. ve Zhao, J.F., (2007). Photochemical degradation of diethyl phthalate with UV/H2O2, Journal of Hazardous Materials, B139, 132-139.
  • Yang, G., Zhao, X., Sun, X. ve Lu, X., (2005). Oxidative degredation of diethyl phthalate by photochemically-enhanced Fenton reaction, Journal of Hazardous Materials, B126, 112-118.
  • Ye, Z.L., Cao, C.Q., He, J.C., Zhang, R.X. ve Hou, H.Q., (2009). Photolysis of organic pollutants in wastewater with 206 nm UV irradiation, Chinese Chemical Letters, 20, 706-710.
  • Yuan, B.L., Li, X.Z. ve Graham, N., (2008). Aqueous oxidation of dimethyl phthalate in a Fe(VI)-TiO2-UV reaction system, Water Research, 42, 1413-1420.
  • Yunrui, Z., Wanpeng, Z., Fudong, L., Jianbing, W. ve Shaoxia, Y., (2007). Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution, Chemosphere, 66, 145-150.