Hibrit Biyofilm Aktif Çamur Sistemleri ile Kentsel Atıksulardan Organik Karbon, Azot ve Fosfor Giderimi: Yenilikçi Hibrit Biyofilm Reaktör Sistemi

Hibrit biyofilm aktif çamur sistemleri, hem enerji verimliliği, hem biyolojik arıtma ünitelerinin kapasitesini artırarak alandan tasarruf sağlaması, hem de konvansiyonel aktif çamur sistemlerinin ve biyofilm proseslerinin kısıtlarını ortadan kaldırarak değişken çevre koşullarına dayanıklılığı nedeniyle giderek yaygın hale gelmektedir. Hibrit sistemler konvansiyonel sistemlere göre daha yüksek verimle biyolojik azot ve fosfor giderimini sağlayacak konfigürasyonlarda tasarlanabilmekte ve işletilebilmektedir. Bu çalışmanın ilk bölümünde konvansiyonel aktif çamur sistemlerinin geliştirilmesinde ve tasarımında kullanılan hibrit biyofilm sistemlerinin uygulama esasları değerlendirilmiştir. Özellikle dünyada yaygın olarak kullanılan Entegre Sabit-Film Aktif Çamur (Integrated Fixed-Film Activated Sludge: IFAS) sistemlerinin tipleri, uygulama şekilleri ve tasarım esasları ile ilgili bilgiler sunulmuştur. Çalışmada ayrıca, bu sistemlerin tasarımında kullanılan özgül yükleme hızları özetlenmiş ve reaktör tasarımına yönelik reaktör hidroliği, biyofilm destek malzemesi özellikleri ve kullanım şekli ile çözünmüş oksijen seviyesi gibi tasarım ve işletme özellikleri değerlendirilmiştir. Farklı kentsel atıksu arıtma tesislerinde uygulanan hibrit IFAS sistemlerinde kullanılan dolgu malzemesi ve konfigürasyona göre çıkış kaliteleri karşılaştırılmıştır. Çalışmanın ikinci bölümünde ise hibrit konfigürasyon ve biyo-flokülasyon yoluyla organik madde giderimini ve nitrifikasyonu aynı anda iyileştirmeyi hedefleyen patentli “Yenilikçi Biyofilm Nitrifikasyon Kontakt Denitrifikasyon Prosesi”nin örnek uygulaması incelenmiştir. Patentli proses konvansiyonel sistemlerle karşılaştırılmış ve üstün yönleri ortaya konmuştur.

___

  • Arias, A., Alvarino, T., Allegue, T., Suárez, S., Garrido, J. M., Omil, F. (2018). An innovative wastewater treatment technology based on UASB and IFAS for cost-efficient macro and micropollutant removal. Journal of Hazardous Materials, 359, 113-120.
  • Bakar, S.N.H.A., Hasan, H.A., Mohammad, A.W., Abdullah, S.R.S., Haan, T.Y., Ngteni, R., Yusof, K.M.M. (2018). A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. Journal of Cleaner Production, 171, 1532-1545.
  • Bassin, J.P., Dias, I.N., Cao, S.M.S., Senra, E., Laranjeira, Y., Dezotti, M. (2016). Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions. Process Safety and Environmental Protection, 100, 131-141.
  • Bohnke, B., Diering, B.C., (1980). Two-stage Activated Sludge Process. Canada.
  • Di Biase, A., Kowalski, M. S., Devlin, T.R., Oleszkiewicz, J.A. (2019). Moving bed biofilm reactor technology in municipal wastewater treatment: A review. Journal of environmental management, 247, 849-866.
  • Di Trapani, D., Mannina, G., Torregrossa, M., Viviani, G. (2010). Comparison between hybrid moving bed biofilm reactor and activated sludge system: a pilot plant experiment. Water Science and Technology, 61(4), 891-902.
  • Forrest, D., Delatolla, R., Kennedy, K. (2016). Carrier effects on tertiary nitrifying moving bed biofilm reactor: an examination of performance, biofilm and biologically produced solids. Environmental technology, 37(6), 662-671.
  • Godzieba, M., Zubrowska-Sudol, M., Walczak, J., Ciesielski, S. (2022). Development of microbial communities in biofilm and activated sludge in a hybrid reactor. Scientific Reports, 12(1), 12558.
  • Grady Jr, C.P.L., Daigger, G.T., Love, N.G., Filipe, C.D. (2011). Biological wastewater treatment. CRC press.
  • Gunes, G., Guven, D., Cokgor, E., Zengin, G.E, Ozyildiz, G., Erdincler, A., Okutman-Tas, D., Takács, I., Insel, G. (2023). Efficient organic carbon utilization for combined nutrient removal and biogas production in hybrid biofilm activated sludge system. Biochemical Engineering Journal, (kabul edildi).
  • Gunes, G., Hallac, E., Ozgan, M., Erturk, A., Okutman-Tas D., Cokgor, E., Guven, D., Takacs, I., Erdincler A., Insel, G. (2019). Enhancement of nutrient removal performance of activated sludge with a novel hybrid biofilm process. Bioproc. Biosystems. Eng., 42 (3), 379-390.
  • Hem, L.J., Rusten, B., Ødegaard, H. (1994). Nitrification in a Moving Bed Biofilm Reactor. Water Research, 28 (6), 1425-1433.
  • Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D. [Ed.] (2008). Biological Wastewater Treatment Principles, Modelling and Design, IWA Publishing, Londra, İngiltere, ISBN: 1843391880.
  • Hoyland, G., Vale, P., Rogalla, F., Jones, M. (2010). A new approach to nutrient removal using the HYBACS process. In Residuals and Biosolids Conference 2010 (pp. 81-94). Water Environment Federation.
  • Insel, G., Yilmaz G., Hazi, F., Artan, N. (2023). Model-based evaluation of simultaneous nitrification and denitrification in aerobic granular sludge systems, Environmental Sci Poll Research, DOI: 10.1007/s11356-023-25252-w.
  • İnsel, G., Çokgör, E., Güneş, G., Okutman-Taş, D. (2018). Biofilm nitrification - contact denitrification system and method, No:2672419, Patent Class: C02F.
  • Jabari, P., Munz, G., Oleszkiewicz, J.A. (2014). Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor. Chemosphere, 109, 20-27.
  • Jenkins, D., Wanner, J., Yuan, Z. [Ed.] (2014). Activated Sludge: 100 Years and Counting, IWA Publishing, Londra, İngiltere.
  • Jimenez, J., Miller, M., Bott, C., Murthy, S., Clippeleir, H., Wett, B. (2015). High-rate activated sludge system for carbon management- Evaluation of crucial process mechanisms and design parameters, 87, 476-482.
  • Kim, H.S., Gellner, J.W., Boltz, J.P., Freudenberg, R.G., Gunsch, C.K., Schuler, A.J. (2010). Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water research, 44(5), 1553-1561.
  • Kim, H.S., Pei, R., Boltz, J.P., Gunsch, C., Gellner, J., Freudenberg, B., Dodson, R. Schuler, A.J. (2009). How does IFAS affect distributions of AOB and NOB Communities? Population measurements and modeling of pilot scale systems. Proceedings of the Water Environment Federation, 15, 2349-2358.
  • Kim, H.S., Schuler, A.J., Gunsch, C.K., Pei, R., Gellner, J., Boltz, J.P., Freudenberg, R.G., Dodson, R. (2011). Comparison of conventional and integrated fixed‐film activated sludge systems: Attached‐and suspended‐growth functions and quantitative polymerase chain reaction measurements. Water Environment Research, 83(7), 627-635.
  • Kovács, R., Takács, I., Benke, J.D. (2013). Facilitating biofilm reactor modelling with an easy-to-use spreadsheet-based tool designed for process engineers. 9th IWA Biofilm Conference, May 28-31, Paris.
  • Leyva-Diaz, J.C., Calderón, K., Rodríguez, F.A., González-López, J., Hontoria, E., Poyatos, J.M. (2013). Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal. Biochemical Engineering Journal, 77, 28-40.
  • Leyva-Diaz, J.C., Martín-Pascual, J., Poyatos, J.M. (2017). Moving bed biofilm reactor to treat wastewater. International journal of environmental science and technology, 14(4), 881-910.
  • Liu, Y., Tay, J.H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water research, 36(7), 1653-1665.
  • Mahendran, B., Lishman, L., Liss, S.N. (2012). Structural, physicochemical and microbial properties of flocs and biofilms in integrated fixed-film activated sludge (IFFAS) systems. Water Research, 46(16), 5085-5101.
  • Mannina, G., Di Trapani, D., Viviani, G., Ødegaard, H. (2011). Modelling and dynamic simulation of hybrid moving bed biofilm reactors: model concepts and application to a pilot plant. Biochemical engineering journal, 56(1-2), 23-36.
  • Mannina, G., Ekama, G.A., Capodici, M., Cosenza, A., Di Trapani, D., Ødegaard, H., van Loosdrecht, M.C.M. (2018). Influence of carbon to nitrogen ratio on nitrous oxide emission in an Integrated Fixed Film Activated Sludge Membrane BioReactor plant. Journal of Cleaner Production, 176, 1078-1090.
  • Martin-Pascual, J., Reboleiro-Rivas, P., López-López, C., Leyva-Díaz, J.C., Jover, M., Muñio, M.M., González-López, J., Poyatos, J.M. (2015). Effect of the filling ratio, MLSS, hydraulic retention time, and temperature on the behavior of the hybrid biomass in a hybrid moving bed membrane bioreactor plant to treat urban wastewater. Journal of Environmental Engineering, 141(7), 04015007.
  • Metcalf ve Eddy (2014). Wastewater Engineering: Treatment and Resource Recovery. 5th Edition, McGraw-Hill, New York.
  • MOP (2010). WEF Manual of Practice 35, Biofilm Reactors, Water Environment Federation, WEF Press, ISBN:978-0-07-173707-4.
  • Ødegaard, H. (2006). Innovations in wastewater treatment: –the moving bed biofilm process. Water Science and Technology, 53(9), 17-33.
  • Ødegaard, H., Christensson M., Sørensen K. (2014). Hybrid systems. In: Jenkins D, Wanner J. Activated Sludge - 100 years and counting. IWA Publishing, London, UK.
  • Ødegaard, H., Rusten, B., Westrum, T. (1994). A new moving bed biofilm reactor-applications and results. Water Science and Technology, 29(10-11), 157.
  • Randall, C.W., Sen, D. (1996). Full scale evaluation of an Integrated fixed film activated sludge (IFAS) process for enhanced nitrogen removal, Water Science and Technology, 33(12), 155-162.
  • Rosso, D., Lothman, S.E., Jeung, M.K., Pitt, P., Gellner, W.J., Stone, A.L., Howard, D. (2011). Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes. Water Research, 45(18), 5987-5996.
  • Salvetti, R., Azzelino, A., Canziani, R., Bunomo, L. (2006). Effects of temperature on tertiary nitrification in moving-bed biofilm reactors Water Research 40, 2981 – 2993.
  • Sekikawa, Y., Nishikawa, S., Okazaki, M., Kato, K. (1967). existence of mono-or poly-phosphate is presumed in activated sludge floc. In. In Advances in Water Pollution Research: Proceedings of the International Conference Held (Vol. 2, p. 261). Symposium Publications Division, Pergamon Press.
  • Sen, D., Mitta, P., Randall, C.W. (1994). Performance of fixed film media integrated in activated sludge reactors to enhanced nitrogen removal Water Sci. Technol. 30(11) 13-24.
  • Wanner, O., Reichert, P. (1996). Mathematical modeling of mixed‐culture biofilms. Biotechnology and bioengineering, 49(2), 172-184.
  • Waqas, S., Bilad, M.R. (2019). A review on rotating biological contactors. Indonesian Journal of Science and Technology, 4(2), 241-256.
  • Ye, J., Chestna, K.L., Kulick, F.M., Rothernel, B. (2010). Full Scale Implementation, Operation, and Performance of a Structured Sheet Media IFAS System, Sf. 2555-2565, Water Environment Federation, WEFTEC 2010, 2-6 Ekim, New Orleans, ABD.