En İyi Yönetim Uygulamalarının Pestisit Kirliliğinin Kontrolünde Kullanımı

Su Havzaları’nda gerçekleştirilen tarımsal faaliyetler havzadaki su kalitesi açısından ciddi bir risk oluşturmaktadır. Kontrolsüz ve aşırı pestisit kullanımı ile tarım alanlarından özellikle yüzeysel akış ile Su Havzaları ve drenaj ağına pestisit taşınımı gerçekleşmektedir. Havzadan su kaynaklarına taşınan kirleticilerin kontrolünü içeren En İyi Yönetim Uygulamaları (EİYU) kaynağında azaltma, tarım alanları ile su kaynakları arasında önlemler alarak kirleticilerin su kaynaklarına ulaşmasını engelleme ve kirlenen suların ihyası gibi yapısal ve yapısal olmayan yöntemler ile havzadaki su kalitesinin iyileştirilmesine yardımcı olur. Bu amaçla İstanbul’daki bir su havzasında (AV01) yapısal EİYU’lardan filtre şerit uygulaması ile yapısal olmayan EİYU’lardan pestisit kullanımının azaltılması ve sonlandırılması yöntemleri SWAT (Soil and Water Assessment Tool) modeli ile simüle edilerek havzadaki pestisit yüküne etkisi araştırılmıştır. Modellenen chlorpyrifos ve fenpropimorph pestisitleri için, 1, 5 ve 25 metrelik filtre şerit genişliklerinde tutulum verimleri incelenmiştir. 1 m genişlikte filtre şerit uygulamasında %36, 5 metrede %59 ve 25 metrede %95 tutulum sağlanmıştır. 1 metre filtre şerit uygulaması ile %20 pestisit kullanım azaltımına gidildiğinde nehir ağına taşınan pestisit miktarında %49’luk bir azalma görülmüştür. Pestisit kullanımı tamamen sonlandırıldığında, incelenen havzadan gelen pestisit kirliliğinin 3-4 yıllık süreçte sonlanacağı sonucuna varılmıştır. Bu çalışma ile SWAT modeli EİYU yeterliliği açısından incelenmiş, EİYU süreçlerini daha iyi temsil etmek için yeni parametrelerin dahil edilmesi (Koc, arazi eğimi, yüzeysel akış derinliği v.b) gibi iyileştirmeler ile modelin daha gerçekçi sonuçlar vereceği öngörülmüştür. Karar destek sistemleri olarak kullanılan matematiksel modeller, yayılı kirleticiler açısından kritik bölgelerin tespit edilmesi ve buna uygun kontrol yöntemlerinin belirlenmesine yardımcı olarak ümit vaat etmektedir.

___

  • Abimbola, O., Mittelstet, A., Messer, T., Berry, E., & van Griensven, A. (2021). Modeling and prioritizing interventions using pollution hotspots for reducing nutrients, atrazine and e. Coli concentrations in a watershed, In Sustainability (Switzerland) 13(1), pp. 1–22. https://doi.org/10.3390/su13010103
  • Ahmadi, M., Arabi, M., Hoag, D. L., & Engel, B. A. (2013). A mixed discrete-continuous variable multiobjective genetic algorithm for targeted implementation of nonpoint source pollution control practices, Water Resources Research, 49(12), 8344–8356. https://doi.org/10.1002/2013WR013656
  • Anderson, B., Phillips, B., Hunt, J., Largay, B., Shihadeh, R., & Tjeerdema, R. (2011). Pesticide and toxicity reduction using an integrated vegetated treatment system, Environmental Toxicology and Chemistry, 30(5), 1036–1043. https://doi.org/10.1002/etc.471
  • Cho, J., Lowrance, R. R., Bosch, D. D., Strickland, T. C., Her, Y., & Vellidis, G. (2010). Effect of watershed subdivision and filter width on swat simulation of a coastal plain watershed1, Journal of the American Water Resources Association, 46(3), 586–602. https://doi.org/10.1111/j.1752-1688.2010.00436.x
  • Doğan, F.N. (2022). Tarım Kaynaklı Pestisitlerin SWAT ile Havza Ölçeğinde Modellenmesi. (Doktora tezi, İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul)
  • Doğan, F. N. & Karpuzcu, M. E. (2019). Türkiye’de tarım kaynaklı pestisit kirliliğinin durumu ve alternatif kontrol tedbirlerinin incelenmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi,25 (6),734-747. https://dergipark.org.tr/tr/pub/pajes/issue/50276/650540
  • Fernández-Pascual, E., Bork, M., Hensen, B., & Lange, J. (2020). Hydrological tracers for assessing transport and dissipation processes of pesticides in a model constructed wetland system, Hydrology and Earth System Sciences, 24(1), 41–60. https://doi.org/10.5194/hess-24-41-2020
  • Gali, R. K., Cryer, S. A., Poletika, N. N., & Dande, P. K. (2016). Modeling pesticide runoff from small watersheds through field-scale management practices: Minnesota watershed case study with chlorpyrifos, Air, Soil and Water Research, 9, 113–122. https://doi.org/10.4137/ASWR.S32777
  • IPCC. (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  • İBB (İstanbul Büyükşehir Belediyesi). (2009). 1/100.000 Ölçekli İstanbul Çevre Düzeni Planı Raporu İstanbul İl Bütünü Araştırma Bulguları. İstanbul:
  • İSKİ (İstanbul Su ve Kanalizasyon İdaresi). (2019). 2019 Faaliyet Raporu. https://www.iski.istanbul/web/tr-TR/kurumsal/faaliyet-raporlari1
  • Karpuzcu, M. E., Sedlak, D. L., & Stringfellow, W. T. (2013). Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: Implications for wetland management, Journal of Hazardous Materials, 244–245, 111–120. https://doi.org/10.1016/j.jhazmat.2012.11.047
  • Krutz, L. J., Senseman, S. A., Zablotowicz, R. M., & Matocha, M. A. (2005). Reducing herbicide runoff from agricultural fields with vegetative filter strips: a review, Weed Science, 53(3), 353–367. https://doi.org/10.1614/ws-03-079r2
  • Li, S., Li, J., Hao, G., & Li, Y. (2021). Evaluation of Best Management Practices for non-point source pollution based on the SWAT model in the Hanjiang River Basin, China. Water Supply, 21(8), 4563–4580. https://doi.org/10.2166/ws.2021.196
  • Love, B. J., Einheuser, M. D., & Nejadhashemi, A. P. (2011). Effects on aquatic and human health due to large scale bioenergy crop expansion. Science of the Total Environment, 409(17), 3215–3229. https://doi.org/10.1016/j.scitotenv.2011.05.007
  • Luo, Y., & Zhang, M. (2009). Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT, Environmental Pollution, 157(12), 3370–3378. https://doi.org/10.1016/j.envpol.2009.06.024
  • Maringanti, C., Chaubey, I., Arabi, M., & Engel, B. (2011). Application of a multi-objective optimization method to provide least cost alternatives for NPS pollution control, Environmental Management, 48(3), 448–461. https://doi.org/10.1007/s00267-011-9696-2
  • Matamoros, V., Caiola, N., Rosales, V., Hernández, O., & Ibáñez, C. (2020). The role of rice fields and constructed wetlands as a source and a sink of pesticides and contaminants of emerging concern: Full-scale evaluation, Ecological Engineering, 156, 105971. https://doi.org/10.1016/j.ecoleng.2020.105971
  • Merriman, K. R., Daggupati, P., Srinivasan, R., Toussant, C., Russell, A. M., & Hayhurst, B. (2018). Assessing the impact of site-specific BMPs using a spatially explicit, field-scale SWAT model with edge-of-field and tile hydrology and water-quality data in the Eagle Creek Watershed, Ohio, In Water (Switzerland) 10(10), https://doi.org/10.3390/w10101299
  • Muñoz-Carpena, R., Fox, G. A., Ritter, A., Perez-Ovilla, O., & Rodea-Palomares, I. (2018). Effect of vegetative filter strip pesticide residue degradation assumptions for environmental exposure assessments, Science of the Total Environment, 619–620, 977–987. https://doi.org/10.1016/j.scitotenv.2017.11.093
  • Sabbagh, G. J., Fox, G. A., Kamanzi, A., Roepke, B., & Tang, J.-Z. (2009). Effectiveness of Vegetative Filter Strips in Reducing Pesticide Loading: Quantifying Pesticide Trapping Efficiency. Journal of Environmental Quality, 38(2), 762–771. https://doi.org/10.2134/jeq2008.0266
  • Sahin, C., & Karpuzcu, M. E. (2020). Mitigation of organophosphate pesticide pollution in agricultural watersheds, Science of the Total Environment, 710. https://doi.org/10.1016/j.scitotenv.2019.136261
  • Vianello M, Vischetti C, Scarponi L, Zanin G. (2005). Herbicide losses in runoff events from a field with a low slope: role of a vegetative filter strip. Chemosphere, 61: 717–25.
  • Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review, Environment International, 75, 11–20. https://doi.org/10.1016/j.envint.2014.10.026
  • Wang, R., Yuan, Y., Yen, H., Grieneisen, M., Arnold, J., Wang, D., Wang, C., & Zhang, M. (2019). A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns, Science of the Total Environment, 669, 512–526. https://doi.org/10.1016/j.scitotenv.2019.03.141
  • Wang, Y., Bian, J., Lao, W., Zhao, Y., Hou, Z., & Sun, X. (2019). Assessing the impacts of best management practices on nonpoint source pollution considering cost-effectiveness in the source area of the Liao River, China, Water (Switzerland), 11(6), 1–20. https://doi.org/10.3390/w11061241
  • Watanabe H, Grismer M. E. (2001). Diazinon transport through inter-row vegetative filter strips: micro-ecosystem modeling, Journal of Hydrology 247:183–99
  • Zhang, X., & Zhang, M. (2011). Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff, Science of the Total Environment, 409(10), 1949–1958. https://doi.org/10.1016/j.scitotenv.2011.02.012