Sıçanlarda aralıklı hipobarik maruziyet ve normobarik antrenman sürecinin bazı kan parametreleri ve doku eser element düzeyleri üzerine etkisi

Amaç: Orta seviye rakımlarda yaşayıp daha aşağı irtifada veya deniz seviyesinde antrenman yapmayla ilgili modeller spor yarışlarına hazırlanma aşamasında tercih edilmektedir. Araştırmada, 3000 metrelik hipobarik koşullara aralıklı olarak maruz bırakılıp normobarik -deniz seviyesi- koşullarında yüzme antrenmanı yaptırılan sıçanlarda hemopoietik parametrelerden hemoglobin, hematokrit, plazma ferritin düzeyleri ile bunlarla yakın ilişkili demir, bakır, çinko gibi bazı eser elementlerin karaciğer ve dalak doku düzeylerinin incelenmesi amaçlanmıştır. Yöntem: 48 Wistar Albino erkek sıçan, hipobarik egzersiz, hipobarik sedanter, normobarik egzersiz, normobarik sedanter olmak üzere randomize ve eşit olarak 4 gruba ayrılmıştır. Sıçanlara 9 hafta süre ile haftada 4 gün ve günde 30 dakika yüzme protokolü uygulanmıştır. Hipobarik maruziyet, 3000 metre yükseklik basıncına eşdeğer kamara ortamında günde 2 saat, haftada 4 gün ve 9 hafta süre ile gerçekleştirilmiştir. Sıçanların doku örneklerindeki demir, bakır ve çinko ölçümleri atomik absorbsiyon spektrofotometresiyle, serum ferritini Active Ferritin Coated-Tube Immunoradiometric Assay (IRMA) ile saptanmıştır. Bulgular: Karaciğer ve dalak dokularındaki demir ve bakır düzeyleri hipobarik gruplarda normobarik gruplara göre anlamlı olarak düşüktü. Hipobarik egzersiz grubunun Hct değeri her iki normobarik gruba göre anlamlı yüksekken, Hb miktarı sadece normobarik egzersiz grubuna göre anlamlı olarak yüksek bulundu. Doku çinko ve serum ferritin değerlerinde ise gruplar arasında herhangi bir anlamlı fark bulunmadı.Sonuç: Çalışmamızın sonuçlarına göre; normobarik yüzme antrenmanı süreciyle birlikte aralıklı hipobarik uygulamaları da içeren protokollerde, demir ve bakır düzeylerinin gereksinim ve tüketim dengesi bağlamında özenle değerlendirilmesi gerekir.

Effects of intermittent hypobaric exposure and normobaric training on some blood parameters and tissue trace elements of rats

Objectives: Living at moderate altitudes and training at lower altitudes or at sea level is a well known training model for preparation to competitions. In our study we investigated the hemopietic parameters; Hb, Hct and plasma ferritin and the tissue levels of trace metals (Fe, Cu and Zn) which are closely related to those homopoietic parameters in liver and spleen of rats which are intermittently exposed to atmospheric pressure of 3000 m and swim trained at sea level. Methods: 48 Wistar albino male rats randomly and equally divided into 4 groups: hypobaric exercise, hypobaric sedentary, normobaric exercise and normobaric sedentary group. Exercising rats performed swimming in a water tank for 30 minutes a day, 4 days a week for 9 weeks, hypobaric groups experienced their hypobaric exposures in a hypobaric chamber which has the atmospheric pressure of an altitude of 3000 m for 2 hours a day, 4 days a week for 9 weeks. In the tissue samples of the rats Fe, Cu and Zn assays were achieved by atomic absorption spectrofotometer and serum ferritin was determined by Active Ferritin Coated-Tube Immunoradiometric Assay (IRMA).Results: Cu and Fe levels in tissues of liver and spleen were significantly lower in hypobaric groups compared to normobaric groups. Whereas the Hb level of hypobaric exercise group was significantly higher than normobaric exercise group, Hct level of this group was significantly higher than both normobaric groups. There were no significant diffrence in tissue levels of Zn and serum ferritin levels between the groups. Conclusion: Results of our study suggests that Fe and Cu levels in a requirement and consumption context should be considered more carefully in a period of training which has intermittent hypobaric exposures.

___

  • 1. Levine BD, Stray-Gundersen J. "Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 1997; 83: 102-112.
  • 2. Roberts AD, Clark SA, Townsend NE, et al. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high: train low altitude exposure. Eur J Appl Physiol 2003; 88: 390-395.
  • 3. Stray-Gundersen J, Chapman RF, Levine BD. "Living hightraining low" altitude training improves sea level performance in male and female elite runners. J Appl Physiol 2001; 91: 1113-1120.
  • 4. Robergs RA, Roberts SO, eds. Exercise in extreme environments, exercise physiology, exercise performance and clinical applications. St. Louis: Mosby; 1997: 640-653.
  • 5. Speich M, Pineau A, Ballereau F. Minerals, trace elements and related biological variables in athletes and during physical activitiy. Clin Chim Acta 2001; 312: 1-11.
  • 6. Andrews NC. Disorders of iron metabolism. N Engl J Med 1999; 341: 1986-1995.
  • 7. Maughan RJ. Role of micronutrients in sport and physical activity. Br Med Bull 1999; 55: 683–690.
  • 8. Chan S, Gerson B, Subramaniam S. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med 1998; 18: 673-685.
  • 9. Miles LEM, Lipschitz DA, Bieber CP, Cook JD. Measurement of ferritin by a 2- site immunoradiometric assay. Analyt Biochem 1974; 61: 209-224.
  • 10. Knaupp W, Khilnani S, Sherwood J, et al. Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol 1992; 73: 837-840.
  • 11. Schmidit W. Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity. High Alt Med Biol 2002; 3: 167-176.
  • 12. Lukaski HC. Magnesium, zinc, and chromium nutriture and physical activity. Int J Clin Nutr 2000; 72: 585S-593S.
  • 13. Maughan RJ. Role of micronutrients in sport and physical activity. Br Med Bull 1999; 55: 683-690.
  • 14. Rawal SB, Singh MV, Tyagi AK, et al. Effect of time exposure to high altitude on zinc and copper concentrations in human plasma Aviat Space Environ Med 1999; 70: 1161-1165.
  • 15. Vats P, Singh SN, Kumria MM, et al. Effect of hypoxia on the circulating levels of essential mineral elements in rats. J Environ Biol, 2001; 22: 277-282.
  • 16. Navas FJ, Cordova A. Iron distribution in different tissues in rats following exercise. Biol Trace Elem Res 2000; 73: 259-268.
  • 17. Kaptanoğlu B, Turgut G, Genç O, ve ark. Effects of acute exercise on the levels of iron, magnesium, and uric acid in liver and spleen tissues. Biol Trace Elem Res 2003; 91: 173-178.
  • 18. Ruckman KS, Sherman AR. Effects of exercise on iron and copper metabolism in rats. J Nutr 1981; 111: 1593-1601.
  • 19. Bordin D, Sartorelli L, Bonanni G, et al. High intensity physical exercise induced effects on plasma levels of copper and zinc. Biol Trace Elem Res 1993; 36: 129-134.
  • 20. Metin G, Atukeren P, Alturfan AA, ve ark. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers Yonsei Med J 2003; 44: 979-986.
  • 21. Lukaski HC. Micronutrients (magnesium, zinc, and copper): are mineral supplements needed for athletes? Int J Sport Nutr 1995; 5: S74-83.
  • 22. Kobayashi A. Trace element and hormonal responses during a flight aptitude test. Aviat Space Environ Med 1996; 67: 333-337.
  • 23. Cordova A, Navas FJ. Effect of training on zinc metabolism: changes in serum and sweat zinc concentrations in sportsmen. Ann Nutr Metab 1998; 42:274-282.
  • 24. Shephard RJ, Shek PN. Immunological hazards from nutritional imbalance in athletes. Exercise Immunol Rev 1998; 4: 22-48.
  • 25. Karakoç Y, Yurdakoş E, Gülyaşar T, ve ark. Experimental stress-induced changes in trace element levels of various tissues in rats. J Trace Elem Exp Med 2003; 16: 55-60.
  • 26. Karakoç Y, Turhan S, Yıldırım EA, ve ark. Neuropeptide Y alters stress-induced changes in trace element concentrations of brain in chronically immobilized rats. J Trace Elem Exp Med 2003; 17: 283-290.
  • 27. Rodriguez TI, Pinilla GE, Maynar MM, et al. A. Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur J Appl Physiol 1996; 73: 299-303.
  • 28. Nuviala RJ, Lapieza MG, Bernal E. Magnesium, zinc, and copper status in women involved in different sports. Int J Sport Nutr 1999; 9: 295-309.