Farklı En-Boy Oranlarına Sahip Binaların Etrafındaki Akışın Sayısal Çözümünde Türbülans Modellerinin Etkisinin Karşılaştırmalı Araştırılması

Hızla artan dünya nüfusu ile birlikte enerji kaynaklarına duyulan ihtiyaç giderek artmaktadır. Ülkemizde ısınma amaçlı enerji tüketimi oldukça fazladır. Bu manada özellikle binalarda ısı tasarrufu oldukça önemlidir. Bina dış duvarları üzerindeki akış ve ısı transferinin modellenerek en az ısı kaybı olacak şekilde tasarlanması yakıt tüketimini düşürerek ekonomik kazanç sağlama konusunda son derece etkilidir. Bu çalışmada farkı en-boy oranlarına (EBO) sahip üç bina ele alınarak, bu binaların etrafındaki akış farklı rüzgâr hızları için üç boyutlu olarak modellenmiştir. Türbülans modeli olarak standart k-? model, RNG k-? model ve realizable k-? model ayrı ayrı kullanılmıştır. Bu farklı durumlar için elde edilen binalar üzerindeki hız vektörleri, binalardan meydana gelen ısı transfer miktarları ve kullanılan türbülans modellerinin çözüm üzerindeki etkileri incelenerek değerlendirmeler yapılmıştır. Çalışmada kullanılan üç modelde de rüzgâr hızları arttıkça ve bina enboy oranları azaldıkça, taşınım katsayısının artışına bağlı olarak binanın tüm yüzeylerindeki ortalama ısı akısının arttığı görülmüştür. Genel olarak, EBO'nun 1:1 olması durumunda üç model de yakın sonuçlar elde edilmiştir. Bina en-boy oranının azalmasıyla elde edilen sonuçlar farklılıklar göstermiştir. Sonuçlar arasındaki fark düşük hızlarda yok denilecek kadar az iken ortalama rüzgâr hızının artması ile bu fark belirginleşmiştir. EBO'ya ve binanın yüzeyine bağlı olarak ısı akısı-hız değişim eğrileri üç modelde de benzerlik göstermiştir.

A Comparative Study of Turbulence Model Effects in Numerical Analyzing Flow around the Buildings Having Various Aspect Ratios

Energy demand is increasing with the rising world population. Energy consumption for heatingpurposes are very high in our country so energy saving is very important especially in buildings. The outer walls of the buildings which are designed to have a minimal heat loss will reduce fuel consumption and so it will provide economic benefits. In this study, two dimensional numerical analysing of the buildings having a various aspect ratio (AR) were performed for different wind velocities by using different turbulence models. The standard k-? model, RNG k-? model and realizable k-? model were used for modelling the turbulent flow. For these different geometrical situations, velocity vectors on buildings, heat transfer rate from buildings and turbulence models effects on the solution were investigated in detail. It was observed that with the decreasing wind speeds and aspect ratio, the average heat flux of all surfaces of the building increased depending on the convection coefficient. For the all three models used in the study it was seen that the average heat flux on all of the building surfaces increased depending on the heat transfer coefficient. With thedecreasing wind velocities and the building aspect ratio. On the condition of AR=1:1, the three models gave very similar results. The results obtained showed differences with the decreasing in the building aspect ratio. The difference between the results was very little in low velocities, but this difference became clear with the increase in the average wind velocity. Depending on AR and the surface of the building, the heat flux-velocity curves gave similar results in all three models.

___

  • [1] Şahin, C.D.; Gökçen, G.; Arsan, Z.D. Bina Enerji Performansı Simülasyonlarının Geçerliliği: BESTEST (Building Energy Simulation Test) Prosedürü. TMMOB Makine Mühendisleri Odası, Tesisat Mühendisliği. 2014; 39, 14-22.
  • [2] Mirsadeghi, M.; Costola, D.; Blocken, B.; Hensen, J.L.M. Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty. Applied Thermal Engineering. 2013; 56, 134-151.
  • [3] Peren, J.I.; van Hoff, T.; Leite, B.C.C.; Blocken, B. CFD analysis of cross-ventilation of generic isolated building with asymmetric opening positions: Impact of roof angle and opening location. Building and Environment. 2015; 85, 263-276.
  • [4] Tsuchiya, M.; Murakami, S.; Mochida, A.; Kondo, K.; Ishida, Y. Devolopment of a new k-? model for flow and pressure fields around bluff body. Journal of Wind
  • [5] Irtaza, H.; Beale. R.G.; Godley, M.H.R.; Jameel, A. Comparison of wind pressure measurements on Silsoe experimental building from full-scale observation, wind-tunnel experiments and various CFD techniques. International Journal of Engineering Science and Technology. 2013; 5(1), 28-41.
  • [6] Nitatwichit, C.; Khunatorn, Y.; Tippayawong, N. Computational analysis and visualization of winddriven naturally ventilated flows around a school building. Maejo International Journal of Science and Technology. 2008; 2(1), 240-254.
  • [7] Yazid, A.W.M.; Sidik, N.A.C. Prediction of the Flow Around a Surface-Mounted Cube using Two-Equation Turbulence Models. Applied Mechanics and Materials. 2013; 315, 438-442.
  • [8] Shao, J.; Liu, J.; Zhao, J. Evaluation of various nonlinear k-? models for predicting wind flow around an isolated high-rise building within the surface boundary layer. Building and Environment. 2012; 57, 145-155.
  • [9] Mochida, A.; Tominaga, Y.; Murakami, S.; Yoshıe, R.; Ishihara, T.; Ooka, R. Comparison of various k-? models and DSM applied to flow around a high-rise building -report on AIJ cooperative project for CFD prediction of wind environment-. Wind and Structures. 2002; 5(2-4), 227-244.
  • [10] Tominaga, Y.; Akabayashi, S.I.; Kitahara, T.; Arinami, Y. Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations. Building and Environment. 2015; 84, 204-213.
  • [11] Ozmen, Y.; Baydar, E.; van Beeck, J.P.A.J. Wind flow over the low-rise building models with gabled roofs having different pitch angels. Building and Environment. 2016; 95, 63-74.
  • [12] FLUENT, Fluent User's Guide, Fluent Incorporated, Lebanon, NH, 2006.
  • [13] Ai, Z.T.; Mak, C.M. Potential use of reduced-scale models in CFD simulationsto save numerical resources: Therotical analysisand case studyof flow around an isolated building. Journal of Wind Engineering and Industrial Aerodynamics. 2014; 134, 25-29.
  • [14] CEDVAL Database (2006), http://mi.unihamburg.de/Data-Sets.432.0.html
  • [15] Ai, Z.T.; Mak, C.M. A study of interunit dispersion around multistorybuildings with single-sided ventilation under different wind directions. Atmospheric Environment. 2014; 88, 1-13.