Evaluation of antimicrobial metabolites produced by Arthrobacter kerguelensis VL-RK_09 by GC-MS analysis

Evaluation of antimicrobial metabolites produced by Arthrobacter kerguelensis VL-RK_09 by GC-MS analysis

The purpose of the present study was concerned with the isolation and characterization of a rare actinobacterial strain designated as VL-RK_09 from a Mango orchard and evaluation of its antimicrobial compounds by GC-MS analysis. Soil dilution plate technique was employed for the isolation of the strain on yeast extract malt extract dextrose (YMD) agar medium. The strain was identified as Arthrobacter kerguelensis based on polyphasic taxonomy. Suitable culture media for the production of antimicrobial metabolites was assessed by inoculating the strain in different ISP (International Streptomyces project) media and non ISP media. The culture broth of the strain grown in best suitable medium (ISP-2) was extracted with different solvents viz., chloroform, ethyl acetate, methanol and acetone. The culture broth inoculated in ISP-2 and extracted with ethyl acetate exhibited strong antimicrobial activity against oppurtunistic pathogenic microorganisms tested. The crude ethyl acetate extract exhibiting high antimicrobial activity was analysed by Gas Chromatography-Mass Spectroscopy to reveal the metabolites produced by the strain and evidenced the presence of 39 compounds according to the available library data, NIST MS Search (ver. 2.0). The results of the present study revealed the production of diversified metabolites by the strain and hence this strain could be a possible source for novel antimicrobial compounds.

___

  • [1] Baltz, R.H. Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall? SIM News 2005; 55, 186-196.
  • [2] Baltz, R.H. Antimicrobials from actinomycetes: back to the future. Microbe 2007; 2, 125-131.
  • [3] Bull, A.T.; Ward, A.C.; Goodfellow, M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev. 2000; 64, 573-606.
  • [4] Valan Arasu, M.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. J. Med. Mycol. 2008; 18, 147-153.
  • [5] Euzéby, J.P. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Sys. Bacteriol. 1997; 47, 590-592.
  • [6] Kamigiri, K. YM-30059, a novel quinolone antibiotic produced by Arthrobacter sp. J. Antibiot. 1996; 49, 823-825.
  • [7] Hentschel, U. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 2001; 35, 305- 312.
  • [8] Li, J.Q.; Tan, B.P.; Mai, K.S.; Ai, Q.H.; Zhang, W.B.; Xu, W.; Liufu, Z.G.; Ma, H.M. Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic vibrios. Aquaculture 2006; 253, 140-147.
  • [9] Lo Giudice, A.; Brun, V.; Michaud, L. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J. Basic Microbiol. 2007; 47, 496-505.
  • [10] Salonius, K.; Siderakis, C.; MacKinnon, A.M.; Griffiths, S.G. Use of Arthrobacter davidanieli as a live vaccine against Renibacterium salmoninarum and Piscirickettsia salmonis in salmonids. Progr. Fish Vaccinol. 2005; 121, 189-197.
  • [11] Wiese, J.; Thiel, V.; Nagel, K.; Staufenberger, T.; Imhoff, J.F. Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Marin. Biotechnol. 2009; 11, 287- 300.
  • [12] Rojas, J.L. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Marin. Genom. 2009; 2, 33-41.
  • [13] Bozzola, J.J.; Russell, L.D. Specimen Preparation for Transmission Electron Microscopy. Electron Microscopy: Principles and Techniques for Biologists. Sudbury, Mass.: Jones and Bartlett. 1999; pp. 21-31.
  • [14] Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces sp. Int. J. Sys. Bacteriol. 1966; 16, 313-340.
  • [15] Cappuccino, J.G.; Sherman, N. Microbiology, a laboratory manual. Pearson Education, Inc., New Delhi, 2004; pp. 282-283.
  • [16] Germida, J.J.; Casida, L.E. Myceloid growth of Arthrobacter globiformis and some other Arthrobacter species. J. Bacteriol. 1980; 144, 1152-1158.
  • [17] Mohamed Ahmed, I.A.; Arima, J.; Ichiyanagi, T.; Sakuno, E.; Mori, N. Isolation and characterization of 3-N-trimethylamino-1-propanol degrading Arthrobacter sp. strain E5. Res. J. Microbiol. 2009; 4, 49-58.
  • [18] Usha Kiranmayi, M.; Sudhakar, P.; Sreenivasulu, K.; Vijayalakshmi, M. Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10. Mycobiol. 2011; 39, 174-181.
  • [19] Munaganti, R.K.; Muvva, V.L.; Naragani, K.; Bindhu B.S.S.N. Cultural parameters influencing the production of Antimicrobial Metabolites by Rhodococcus erythropolis VL-RK_05. Int. J. Curr. Res. 2015; 7, 14924-14931.
  • [20] Naragani, K.; Munaganti, R.K.; Mangamuri, U.K.; Muvva V.L. Optimization of Culture Conditions for Enhanced Antimicrobial Activity of Rhodococcus erythropolis VLK-12 Isolated from South Coast of Andhra Pradesh, India. Brit. Microbiol. Res. J. 2014; 4, 59-75.
  • [21] Gao, H.; Liu, M.; Liu, J.; Dai, H.; Zhou, X.; Liu, X.; Zhuo, Y.; Zhang, W.; Zhang, L. Medium optimization for the production of avermectin B1a by Streptomyces avermitili 14-12A using response surface methodology. Biores. Technol. 2009; 100, 4012-4016.
  • [22] Jia, B.; Jin, Z.; Mei, L. Medium Optimization Based on Statistical Methodologies for Pristinamycins Production by Streptomyces pristinaespiralis. Appl. Biochem. Biotechnol. 2008; 144, 133-143.
  • [23] Lin, J.; Bai, L.; Deng, Z.; Zhong, J. Effect of Ammonium in Medium on Ansamitocin P-3 Production by Actinosynnema pretiosum. Biotechnol. Biopro. Engin. 2010; 15, 119-125.
  • [24] Ruiz, B.; Chavez, A.; Forero, A.; Garcıa-Huante, Y.; Romero, A.; Sanchez, M.; Rocha, D.; Sanchez, B.; Rodruguez-Sanoja, R; Sanchez, S.; Langley, E. Production of microbial secondary metabolites: Regulation by the carbon source. Crit. Rev. Microbiol. 2010; 36, 146-167.
  • [25] Sánchez, S.; Chavez, A.; Forero, A.; GarcıaHuante, Y.; Romero, A.; Sánchez, M.; Rocha, D.; Sánchez, B.; Avalos, M.; Guzman-Trampe, S.; Rodrıguez Sanoja, R.; Langley, E.; Ruiz, B. Carbon source regulation of antibiotic production. J. Antibiot. 2010; 63, 442-459.
  • [26] Li, Y.; Li, Q.; Hao, D.; Jiang, D.; Luo, Y.; Liu, Y.; Zhao, Z. Production, Purification, and Antibiofilm Activity of a Novel Exopolysaccharide from Arthrobacter sp. B4. Prep. Biochem. Biotechnol. 2015; 45, 192-204