Bazı Stres Faktörlerinin Aerobik Oksalat Bakterinin Kültüre Edilebilirliği ve Canlılığı Üzerine Etkileri

Çevresel faktörlerden sıcaklık, pH, besin, osmolarite ve antibiyotik stresinin Gram-negatif, çubuk şekilli aerobik oksalat bakterileri; Cupriavidus oxaliticus Ox1, Oxalicibacterium flavum TA17T, Xanthobacter sp. NS14 ve Cupriavidus necator NS02' nin kültüre edilebilirliği ve canlılığı üzerindeki etkisi belirlenmiştir. Hemen hemen 4 oksalat bakterisinin 30 °C koloni sayımları çok yüksek olmasına rağmen 40 ve 45 °C' de, en iyi büyüme gösterebilen suş TA17T' dir. pH değeri arttıkça bütün bakteri suşlarının koloni sayısının dereceli olarak kontrole göre (pH:7) azaldığı görülmüştür. pH 8'de en fazla koloni sayısı Ox1 suşunda gözlemlenmiştir. Besin stresi denemelerinde en iyi bakteriyal büyüme NS02 ve NS14 suşları için %0.6 potasyum oksalat (PO) ilaveli ortamda tespit edilmiştir. 4 organizmanın farklı konsantrasyonlardaki tuza (NaCI) karşı töleransları değişmekle beraber; NS14 suşunun %2 NaCl oranındaki ortamda koloni sayısı kontrole göre yüksektir. Organizmaların ampisilin antibiyotiğinin farklı konsantrasyonlarına karşı verdikleri cevap benzer olup; 2 µg/mL ve üzerindeki miktarlarında hiçbir suş üreme gösterememiştir. İndikatör olarak 2,3-5 trifenil tetrazolium klorit (TTC) kullanılarak yapılan canlılık belirleme testleri sonuçları ile koloni sayım sonuçları arasında bir korelasyon saptanamamıştır. Kullanılan oksalat bakterilerin uygulanan çevresel stres faktörlerine karşı verdikleri cevaplar farklılık göstermektedir. Çalışmada, özellikle yüksek pH ve sıcaklıkta büyüme gösterebilen oksalat bakterilerinin endüstriyel alanlarda kullanılabileceği öngörülmektedir.

Effects of Some Stress Factors on Culturability and Viability of Aerobic Oxalate Bacteria

The effects of environmental factors such as temperature, pH, nutrition, osmolarity and antibiotic stress for the determination of culturability and viability on gram negative rod shaped aerobic oxalate bacteria; Cupriviadus oxaliticus Ox1, Oxalicibacterium flavum TA17T, Xanthobacter sp. NS14 and Cupriavidus necator NS02 was studied. Colony counts at 30 °C for almost 4 oxalate bacteria were very high whereas optimum growth at 40 and 45 °C was seen for strain TA17T. Increasing the pH values were decreased the colony counts of all strains gradually, comparison with control (pH:7). The most colony count at pH 8 was observed with the strain Ox1. The nutrition stress experiments showed that the most bacterial growth was determined in the medium supplemented with 0.6% potassium oxalate (PO) for the strains NS02 and NS14. Tolerances of 4 organism at different concentrations of salt (NaCI) comparison with control were variable but colony counts of the strain NS14 was high at the 2% NaCI. Organisms reacts almost the same as the reaction against different ampicillin concentrations but at the 2 µg/mL and above no growth was observed for any strain. Comparison the colony count with viability test results that determined with the indicator 2,3-5 triphenly tetrazolium chloride (TTC); any correlations were not found. The used oxalate bacteria differentiate the reactions to applied environmental factors. It is foresighted that the oxalate bacteria capable growth especially at high pH and temperature can be used in industrial areas.

___

  • [1] Panoff, J.M.; Thammavongs, B.; Gueguen, M.; Bou- tibonnes, P. Cold Stress Responses in Mesophilic Bacteria. Cryobiol. 1998; 36, 75-83.
  • [2] Moat, A.G.; Foster, J.W.; Spector, M.P. Microbial Physiol- ogy, A John Wiley and Sons, Inc., Publication, 4 th edition, New York, 2002; 582-601.
  • [3] Basalik, K. Über die verarbeitung der oxalsaure durch Bacillus extorquens n sp. Jahrb.Wiss. Bot. 1913; 53, 255-302.
  • [4] Şahin, N. Oxalotrophic bacteria. Res. Microbiol. 2003; 154, 399-407.
  • [5] Şahin, N. Isolation, Charecterization and Phylogenetic Analysis of Some New Oxalotrophic Bacteria. Dokuz Eylül Üniversitesi Ortaöğretim Fen ve Matematik Alanlar Eğitimi, Doktora Tezi, 2001, İzmir.
  • [6] Dinsdale, R.M.; Freda, M.; Hawkes, R.; Dennis L. An- aerobic Digestion of Short Chain Organic Acids in an Expanded Granular Sludge Bed Reactor. Wat. Res. 2000; 34, 2433-2438.
  • [7] Aragno, M.; Verrecchia, E. The oxalate-carbonate pathway: a reliable sink for atmospheric CO2 through calcium carbonate biomineralization in ferralitic tropical soils. In Microorganisms in Environmental Management. Satyanarayana, T.; Johri, B.N.; Prakash, A. (eds). Dordrecht: Springer, 2012; pp. 191-200.
  • [8] Martin, G.; Guggiari, M.; Bravo, D.; Zopfi, J.; Cailleau, G.; Aragno, M.; Job, D.; Verrecchia E.; Junier P. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction. Environ. Microbiol. 2012; 14, 2960- 2970.
  • [9] Nagarajkumara, M.; Jayarajb, J.; Muthukrishnanb, S.; Bhaskarana, R.; Velazhahana, R. Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: Implica- tions for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol. Res. 2005; 160, 291-298.
  • [10] Sidhu, H.; Allison, M.; Peck, A.B. Identification and Clas- sification Oxalobacter formigenes Strains by Using Oligonu- cleotide Probes and Primers. Clin. Microbiol. 1997; 35, 350- 353.
  • [11] Allison, M.; Sidhu, H.; Chow, J.; Clark, A.; Peck, A. Rapid Reversal of Hyperoxaluria in Rat Model After Pro- biotic Administration of Oxalobacter formigenes. J. Urol. 2001; 166, 1487-1491.
  • [12] Şahin, N.; Gokler, I.; Tamer, A.U. Isolation, Charac- terization and Numerical Taxonomy of Novel OxalateOxidizing bacteria. J. Microbiol. 2002; 40, 109-118.
  • [13] Tamer, A.U.; Aragno, M.; Şahin, N. Isolation and Charac- terization of a New Type of Aerobic, Oxalic Acid Utilizing Bacteria, and Proposal of Oxalicibacterium flavum gen. nov., sp nov. Syst. Appl. Microbiol. 2002; 25, 513-519.
  • [14] Schlegel, H.G.; Aragno, M. 1992. The Mesophilic Hy- drogen-Oxidizing (Knallgas) Bacteria In: The Prokaryotes. A Handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications. 2nd edition. Balows, A.; Trüper, H.G.; Dworkin, M.; Harder, W.; Scheleifer, K-H. (Eds.). Springer-Verlag. Berlin, Heidelberg, New York, 1992; pp 344-384.
  • [15] Khambata, S.R.; Bhat, J.V. Studies on a New Oxalatedecomposing Bacterium, Pseudomonas oxaliticus. J. Bacteriol. 1953; 66, 505-507.
  • [16] Smeds, A.; Varmenan, P.; Palva A. Molecular Character- ization of a Stress-Inducible Gene from Lactobacillus helveticus. J. Bacteriol. 1998; 180, 6148-6153.
  • [17] Otani, M.; Ueki, T.; Kozuka, S.; Segawa, M.; Sano, K.; Inouye, S. Characterization of a Small Heat Shock Protein Mxp Hsp 16.6, of Myxococcus xanthus. J. Bacteriol. 2005; 187, 5236-5241.
  • [18] Adıgüzel, A.; Özkan, H.; Barış, O.; İnan, K.; Güllüce, M.; Şahin, F. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J. Microbiol. Met. 2009; 79, 321-328.
  • [19] Adıgüzel, A.; İnan, K.; Şahin, F.; Arasoğlu, T.; Güllüce, M.; Beldüz, A.O.; Bariş, Ö. Molecular diversity of thermophilic bacteria isolated from Pasinler hot spring (Erzurum, Turkey). Turk. J. Biol. 2011; 35, 267-274.
  • [20] Adıgüzel, G.; Sönmez, Z.; Adıgüzel, A.; Nadaroğlu, H. Purification and characterization of a thermostable endobeta-1,4 mannanase from Weissella viridescens LB37 and its application in fruit juice clarification. European Food Res. Technol. 2016; 242, 769-776.
  • [21] Nadaroğlu, H.; Adıgüzel, A.; Adıgüzel, G. Purification and characterisation of ?-mannanase from Lactobacillus plantarum (M24) and its applications in some fruit juices. Int. J. Food Sci. Technol. 2015; 50, 1158-1165.
  • [22] Adıgüzel, A.; Nadaroğlu, H.; Adıgüzel, G. Purification and characterization of ?-mannanase from Bacillus pumilus (M27) and its applications in some fruit juices. J. Food Sci. Technol. 2015; 52, 5292-5298.
  • [23] Browne, N.; Dowds, B.C.A. Heat and Salt Stress in the Food Pathogen Bacillus cereus. J. Appl. Bacteriol. 2001; 91, 1085-1084.
  • [24] Eguchi, M.; Nishikawa, T.; Macdonald, K.; Cavicchio- li, R.; Gottschal, J.C.; Kjelleberg, S. Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256. Appl. Environ. Microbiol. 1996; 62, 1287-1294.
  • [25] Wilson, L.; Foster, W.J. A low pH- Inducible, PhoPQDependent Acid Tolerance Response Protects Salmonella thyphimurium against Inorganic Acid Stress. J. Bateriol. 1998; 180, 2409-2417.
  • [26] Völker, U.; Maul, B.; Hecker, M. Expression of the ?B -Dependent General Stress Regulon Confers Multiple Stress Resistance in Bacillus subtilis. J. Bacteriol. 1999; 181, 3942-3948.
  • [27] Koutsoumanis, K.P.; Sotos, J.N. Comparative Acid Stres Response of Listeria monocytogenes, Escherichia coli O: 157:H7 and Salmonella thyphimurium After Habutiation at Different pH Conditions. Lett. Appl. Microbiol. 2004; 38, 321- 326.
  • [28] Farrell, M.J.; Finkel, S.E. The Growth Advantage in Stationary Phase rpOS Mutations Is Dependent on the pH and Nutrient Environment. J. Bacteriol. 2003; 185, 7044- 7052.
  • [29] Akpinar, O.; Uçar, F.; Yalçın, H.T. Screening and regula- tion of alkaline extracellular protease and ribonuclease pro- duction of Yarrowia lipolytica strains isolated and identified from different cheeses in Turkey. Ann. Microbiol. 2011; 61, 907-915.
  • [30] Yalçın, H.T.; Çorbacı, C.; Uçar, F.B. Molecular character- ization and lipase profiling of the yeasts isolated from envi- ronments contaminated with petroleum. J. Basic Microbiol. 2014; S85-S92.
  • [31] Koga, T.; Katagiri, T.; Takumi, K. Alkaline adaptation induces cross-protection against some environmental stresses and morphological change in Vibrio parahaemolyticus. Microbiol. Res. 2002; 157, 249-255.
  • [32] Darcan, C. Karadeniz Suyunda pH, Osmolarite ve Açlık Stresinin Escherichia coli' nin Dış membran Porin Sentez Düzeyine Etkisinin Araştırılması. On Dokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 2004, Sam- sun.
  • [33] Yıldız, H.Y.; Schoonik, G.K. Role of rpoS in Stress Sur- vival and Virulence of Vibrio cholera. J. Bacteriol. 1998; 180, 773-784.
  • [34] Farwick, M.; Siewe, R.M.; Kramer, R. Glycine Betaine Uptake after Hyperosmotic Shift Corynebacterium glutamicum. J. Bacteriol. 1995; 177, 4690-4695.
  • [35] Thorne H.S.; Williams H.D. Cell Density-Density Dependent Starvation Survival of Rhizobium leguminosorum bv phaseoli: Identification of the Role of an N-Acyl Homoser- ine Lactone in Adaptation to Stationary-Phase Survival. J. Bacteriol. 1999; 181, 981-990.
  • [36] Jenkins, D.E.; Chaisson S.A.; Matin A. Starvation In- duced Cross Protection against Osmotic Challenge in Escherichia coli. J. Bacteriol. 1990; 172, 2279-2781.
  • [37] Molenaar, D.; Hagting, A.; Alkema, H.; Driessen, A.J.; Konings W.N. Characteristic and Osmoregulatory Roles of Uptake Systems for Proline and Glycine Betaine in Lactococcous lactis. J. Bacteriol. 1993; 175, 5438- 5444.
  • [38] Martins, L.O.; Carreto, L.S.; Costa, M.S.; Santos, H. New Compatible Solutes Related to Di-myo-Inositol Phosphate in Members of the Order Thermotagales. J. Bacteriol. 1996; 178, 5644-5651.
  • [39] Rinkel, K.O.; Smith, L.T.; Smith, G.M. Glycine Betaine Confers Enhanced Osmotolerance and Crytolerance on Listeria monocytogenes. J. Bacteriol. 1994; 176, 426-431.
  • [40] Vasseur, C.; Baverel, L.; Hebraud, M.; Labadie C. Effect of Osmotic, Alkaline, Acid or Thermal Stresses on the Growth and Inhibition of Listeria monocytogenes. J. Appl. Bacteriol. 1999; 86, 469-476.
  • [41] Russel, N.J.; Evans, R.I.; Terstees, P.F.; Hellemons, J.; Verheul, A.; Abee, A. Membranes as Target for Stress Adapta- tion. Int. J. Food Microbiol. 1995; 28, 255-261.
  • [42] Ciulla, R.; Clougherty, C.; Belay, N.; Krishnan, S.; Zhou, C.; Byrd, D.; Roberts, M.F. Halotolerance of Methanobacterium thermoautotrophicum. J. Bacteriol. 1994; 176, 3177-3187.
  • [43] Boch, J.; Kempf, B.; Schmid, R.; Bremer, E. Synthesis of the Osmoprotectant glycine Betaine in Bacillus subtilis Characterization of the gbsAB genes. J. Bacteriol. 1996; 178, 5121-5129.