Naphthoquinones from Onosma: Molecular Mechanisms of Action in the Treatment and Prevention of COVID-19

Naphthoquinones from Onosma: Molecular Mechanisms of Action in the Treatment and Prevention of COVID-19

Absrtact COVID-19, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in December 2019 in Wuhan, China. There is currently no effective treatment or immunization for the virus, and it is spreading rapidly with a high mortality rate. As a crucial CoV enzyme involved in initiating both viral replication and transcription, the COVID-19 main protease (Mpro) is an appealing target for researchers. Novel therapeutics are urgently required to treat the early stages of COVID-19 caused by SARS-CoV-2. Therefore, to find potential COVID-19 Mpro inhibitors, naphthoquinones from the Onosma genus were screened to find out their possible effects on the Mpro enzyme. In this study, we employed a range of computational approaches, including molecular docking and MM-GBSA, to uncover potential inhibitors of SARS-CoV-2 Mpro from existing natural product databases. According to our findings, the molecules deoxyshikonin, 3-hydroxy-isovalerylshikonin, propionylshikonin, and acetylshikonin have high binding affinities for the Mpro enzyme. In addition, it was observed that the other shikonin compounds have anti-Mpro enzyme activity. Docking simulations and molecular mechanics suggest that shikonin derivatives might be effective anti-SARS-CoV-2 compounds.

___

  • Lillie, P. J., Samson, A., Li, A., Adams, K., Capstick, R., Barlow, G. D., Easom, N., Hamilton, E., Moss, P. J., Evans, A., Ivan, M., Taha, Y., Duncan, C. J. A., & Schmid, M. L., & The Airborne HCID Network, PHE Incident Team. (2020). Novel coronavirus disease (Covid-19): The first two patients in the UK with person to person transmission. Journal of Infection, 80, 578–606. https://doi.org/10.1016/j.jinf.2020.02.020
  • Lai, C. C., Liu, Y. H., Wang, C. Y., Wang, Y. H., Hsueh, S. C., Yen, M. Y., Chien Ko, W., & Hsueh, P. R. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection, 53(3), 404-412. https://doi.org/10.1016/j.jmii.2020.02.012
  • De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8), 523-534. https://doi.org/10.1038/nrmicro.2016.81
  • Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 395(10225), 689-697. https://doi.org/10.1016/S0140-6736(20)30260-9
  • Yan, S., Sun, H., Bu, X., & Wan, G. (2020). New strategy for COVID-19: an evolutionary role for RGD motif in SARS-CoV-2 and potential inhibitors for virus infection. Frontiers in Pharmacology, 11, 912. https://doi.org/10.3389/fphar.2020.00912
  • Van Der Hoek, L., Pyrc, K., Jebbink, M. F., Vermeulen-Oost, W., Berkhout, R. J., Wolthers, K. C., & Berkhout, B. (2004). Identification of a new human coronavirus. Nature medicine, 10(4), 368-373. https://doi.org/10.1038/nm1024
  • Zheng, J. (2020). SARS-CoV-2: an emerging coronavirus that causes a global threat. International journal of biological sciences, 16(10), 1678. 10.7150/ijbs.45053
  • Hilgenfeld, R. (2014). From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. The FEBS journal, 281(18), 4085-4096. https://doi.org/10.1111/febs.12936
  • Ortega, J. T., Serrano, M. L., Pujol, F. H., & Rangel, H. R. (2020). Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI journal, 19, 400. http://dx.doi.org/10.17179/excli2020-1189
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., & Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293. https://doi.org/10.1038/s41586-020-2223-y
  • El-Shazly, A., Abdel-Ghani, A., & Wink, M. (2003). Pyrrolizidine alkaloids from Onosma arenaria (Boraginaceae). Biochemical Systematics and Ecology, 31(5), 477-485. https://doi.org/10.1016/S0305-1978(02)00177-1
  • Binzet, R. (2009). Anatomical and palynological investigations on endemic Onosma mersinana Riedl, Binzet & Orcan. Pakistan Journal of Botany, 41, 503-510.
  • Ozgen, U., Miloglu, F. D., & Bulut, G. (2011). Quantitative determination of shikonin derivatives with UV-Vis spectrophotometric methods in the roots of Onosma nigricaule. Reviews in Analytical Chemistry, 30(2), 59-63. https://doi.org/10.1515/revac.2011.014
  • Kagramanyan, N. S., & Mnatsakanyan, V. A. (1985). Shikonin and its derivatives from Onosma setosum roots. Armyanskii Khimicheskii Zhurnal, 38(8), 527-8.
  • Sut, S., Pavela, R., Kolarčik, V., Cappellacci, L., Petrelli, R., Maggi, F., & Benelli, G. (2017). Identification of Onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules, 22(6), 1002. https://doi.org/10.3390/molecules22061002
  • Ozgen, U., Ikbal, M., Hacimuftuoglu, A., Houghton, P. J., Gocer, F., Dogan, H., & Coskun, M. (2006). Fibroblast growth stimulation by extracts and compounds of Onosma argentatum roots. Journal of ethnopharmacology, 104(1-2), 100-103. https://doi.org/10.1016/j.jep.2005.08.052
  • Schrödinger Release 2020-3: Maestro, Schrödinger, LLC, New York, NY, 2020
  • Kılınç, N. Inhibition profiles and molecular docking studies of antiproliferative agents against aldose reductase enzyme. International Journal of Chemistry and Technology, 5(1), 77-82. https://doi.org/10.32571/ijct.944049
  • Genheden, S.; Ryde, U. (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449-461. https://doi.org/10.1517/17460441.2015.1032936
  • Oladele, J. O., Ajayi, E. I., Oyeleke, O. M., Oladele, O. T., Olowookere, B. D., Adeniyi, B. M., & Oladiji, A. T. (2020). A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon, e04897. https://doi.org/10.1016/j.heliyon.2020.e04897
  • Tada, M., Okuno, K., Chiba, K., Ohnishi, E., & Yoshii, T. (1994). Antiviral diterpenes from Salvia officinalis. Phytochemistry, 35(2), 539-541. https://doi.org/10.1016/S0031-9422(00)94798-8
  • Koch, C., Reichling, J., Kehm, R., Sharaf, M. M., Zentgraf, H., Schneele, J., & Schnitzler, P. (2008). Efficacy of anise oil, dwarf‐pine oil and chamomile oil against thymidine‐kinase‐positive and thymidine‐kinase‐negative herpesviruses. Journal of Pharmacy and Pharmacology, 60(11), 1545-1550. https://doi.org/10.1211/jpp.60.11.0017
  • Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus research, 131(2), 111-120. https://doi.org/10.1016/j.virusres.2007.09.008
  • Tan, W. C., Jaganath, I. B., Manikam, R., & Sekaran, S. D. (2013). Evaluation of antiviral activities of four local Malaysian Phyllanthus species against herpes simplex viruses and possible antiviral target. International Journal of Medical Sciences, 10(13), 1817. 10.7150/ijms.6902
  • Mikaili, P., Maadirad, S., Moloudizargari, M., Aghajanshakeri, S., & Sarahroodi, S. (2013). Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iranian journal of basic medical sciences, 16(10), 1031.
  • Theisen, L. L., & Muller, C. P. (2012). EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral research, 94(2), 147-156. https://doi.org/10.1016/j.antiviral.2012.03.006
  • Yu, M. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y. W., Jee, J. G., & Jeong, Y. J. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & medicinal chemistry letters, 22(12), 4049-4054. https://doi.org/10.1016/j.bmcl.2012.04.081
  • Zandi, K., Teoh, B. T., Sam, S. S., Wong, P. F., Mustafa, M. R., & AbuBakar, S. (2012). Novel antiviral activity of baicalein against dengue virus. BMC complementary and alternative medicine, 12(1), 1-9. https://doi.org/10.1186/1472-6882-12-214
  • Andújar, I., Ríos, J. L., Giner, R. M., & Recio, M. C. (2013). Pharmacological properties of shikonin–a review of literature since 2002. Planta medica, 79(18), 1685-1697. 10.1055/s-0033-1350934
  • Chen, X., Yang, L., Zhang, N., Turpin, J. A., Buckheit, R. W., Osterling, C., & Howard, O. Z. (2003). Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrobial agents and chemotherapy, 47(9), 2810-2816. https://doi.org/10.1128/AAC.47.9.2810-2816.2003
Caucasian Journal of Science-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: Kafkas Üniversitesi
Sayıdaki Diğer Makaleler

Fen Bilimleri Dersi 5. Sınıf “Işığın Yayılması” Ünitesine Yönelik Başarı Testi Geliştirme Çalışması

Serkan SEVIM, İsmail UYSAL, Emin DEMİRCİ

Conformational and Vibrational Analysis of Chalcone (E)-3-(Furan-2-yl)-1-Phenylprop-2-en-1-one by Density Functional Theory and ab initio Hartree-Fock

Güventürk UĞURLU

Neighborhoods of Certain Classes of Analytic Functions Defined By Miller-Ross Function

Sercan KAZIMOĞLU

Male Attitudes in Kars, Turkey Toward Violence Against Women

Mehmet UTKAN, Rukiye TÜRK

Thermal Camera Use for Evaluation of Patients and Injured in Chemical, Biological, Radiological, Nuclear Events

Çağatay KADİRSOY, Gökhan NUR, Hüseyin KAFADAR

Bazı Organik Elektrolüminesans 2-[3-(Metil/Etil/p-Metilbenzil)-5-okso-1H-1,2,4-triazol-4(5H)-yl]-izoindolin-1,3-dionlar'ın Yoğunluk Fonksiyon Teorisi ile Elektronik Özelliklerinin Belirlenmesi

Murat BEYTUR, Zeynep Şilan TURHAN, Haydar YÜKSEK

Investigation of The Activity of Lipase Variants on Different 4-Nitrophenyl Esters by Spectrophotometric Assay

Nurcan VARDAR YEL

Kobalt(II) 4-Floro- ve 4-Bromobenzoat Nikotinamid Komplekslerinin Hirshfeld Yüzey Analizi, Etkileşim Enerjisi Hesaplamaları ve Koronavirüs Spike Proteini ile Etkileşimlerinin Moleküler Docking Çalışmaları ile İncelenmesi

Füreya Elif ÖZTÜRKKAN, Giray Buğra AKBABA, Mustafa SERTÇELİK

Influence of Citrobacter freundii Infection on Ion Levels of Model Organism Galleria mellonella Larvae

Serkan SUGEÇTİ

Naphthoquinones from Onosma: Molecular Mechanisms of Action in the Treatment and Prevention of COVID-19

Namık KILINÇ