Karbon Nanotüp Takviyeli Aluminyum Matriksli AlMg/KNT Kompozitlerinin Mekanik Davranışlarının İncelenmesi

Bu çalışmada, toz metalürjisi tekniği kullanılarak AlMg matriksine ağırlıkça farklı oranlar da (%2,5-%10) KNT takviyesi ile AlMg/KNT nano kompozit malzemeleri üretilmiştir. Helezonik Trubula karıştırma cihazında altı saat ve 400 Rpm de karıştırma işlemi yapılmıştır. Mekanik karıştırmanın ardından sırası ile toz karakterizasyonu, optik incelemeler, sertlik ve yoğunluk testleri yapılmıştır. XRD analizlerine dayanarak hassasiyetle 200 Mpa basınç altında metal kalıpta numuneler üretilmiştir. Üretilen AlMg/KNT kompozit numuneleri yüksek vakum altında farklı (350 0C, 400 0C, 450 0C) sıcaklıklar da 120 dakika boyunca sinterlenerek üretilen numunelerin sertlik, yoğunluk ve metalografik incelemeleri yapılmıştır. Aynı atmosferde, farklı sıcaklık ve farklı KNT oranlar ile üretilmiş olan AlMg/KNT kompozit numunelerinin XRD analizlerine ait pik şiddetlerinde artan KNT oranları ile birlikte 42,6º de gözle görülür artış olup aynı şekilde artan KNT oranı ile sinterleme sıcaklıklarına bağlı olarak sertlik değerlerinde iyileşme ve yoğunluk düşüşü gözlemlenmiştir.

Investigation of Mechanical Behavior of Carbon Nanotubes Reinforced Aluminum Matrix AlMg / CNT Composites

In this study, AlMg / KNT nanocomposite materials were produced by using powder metallurgy technique with different ratios (2.5% -10%) of KNT reinforced to AlMg matrix. Mixing was carried out for 6 hours and 400 rpm in the spiral stirrer. After mechanical mixing, powder characterization, optical examinations, hardness and density tests were carried out. Based on XRD analyzes, samples of metal mold were produced with a precision of 200 MPa. Composite samples of AlMg / KNT produced were sintered at different temperatures (350 0C, 400 0C, 450 0C) for 120 minutes under high vacuum, and hardness, density and metallographic investigations of the samples were made. In the same atmosphere, the peak intensity of XRD analyzes of AlMg / KNT composite specimens produced at different temperatures and different CNT ratios showed a noticeable increase at 42.6° C with increasing CNT ratios, and with the same increase in CNT ratios, the hardness values improved and density.

___

  • Koczak, M ve Premkumar, M.K., 1989. High Performance Powder Metallurgy Aluminum Alloys an Overview. Philadelphia, 121.
  • Agnew SR, Horton JA, Lillo TM, Brown DW., 2004, Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Journal of Scr Mater, 50:377.
  • Bolzoni L., Esteban P., Ruiz-Navas E.M., Gordo E., 2011. Influence of Powder Characteristics on Sintering Behaviour and properties of PM Ti Alloys produced from Prealloyed Powder and Master alloy. Journal of Powder Metallurgy 54: 543-550.
  • Cai W., Feng X., Sui J.,2012, Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering, Journal of Rare Metals, 31, 48-50.
  • Dieter G.E., 1988. Mechanical Metallurgy, McGraw-Hill, London, 376 Elke H., 2007. Magnesium for Aerospace Applications. EADS Deutschland Innovation Works Fauchais P., Vardella M., Vardelle, A., Bianchi L., 1996. Journal of Ceramic International 22:295–303.
  • Ferkel H., Mordike BL., 2001. Magnesium strengthened by SiC nanoparticals. Mater Journal of Science Engineering A 298:193-199.
  • Ge M., K. Sattler.,1994. Bundles of carbon nanotubes generated by vaporphase growth. Journal of Applied Physics Letters 64 (6) : 710–711
  • German, R,M., 2005. Powder Metallurgy and Particulate Materials Processing. Princeton, 221. Gülsoy H.Ö., Gülsoy N., Calışıcı R., 2014. Particle Morphology Influence on Mechanical and Biocompatibility Properties of Injection Molded Ti Alloy Powder. Journal of Biomedical Materials and Engineering. 24:1861-1873.
  • Iijima S.,1991. Helical Microtubules of Graphitic Carbon. Journal of Nature 354: 56–58.
  • Kim WJ., An CW., Kim YS., Hong SI., 2002. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing. Journal of Scr Mater 47:39.
  • Kim WJ., Hong SI., Kim YS., Min SH., Jeong HT., Lee JD., 2003. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Journal of Acta Mater 51:3293.
  • Kwon H., Park D.H., Silvian J.F., Kawasaki A., 2010. Investigation of Carbon Nanotube Reinforced Aluminum Matrix Composite Materials. Journal of Composite Science Technology 70: 546–550.
  • Nikolaev P., Bronikowski M.J., Bradley R.K., Fohmund F., Colbert D.T, K.A. Smith K.A., 1999. Journal of Chemical Physics Letters, 313 (1-2): 91–97
  • Munir K.S., Li Y., Liang D., Qian M., Xu W., Wen C., 2015. Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites, Journal of Materials & Design, 88 138-148.
  • Paramsothy M., Gupta M., Chan J., Kwok J., 2011. Carbon Nanotube Addition to Simultaneously Enhance Strength and Ductility of Hybrid AZ31/AA5083 alloy. Journal of Material Science and Applications 2: 20-29
  • Rashad R.M., Awadallah O.M., 2013. Wifi Effect of MWCNTs Content on the Characteristics of A356 Nanocomposite. Journal of Achievements in Materials and Manufacturing Engineering. 58(2): 74-80
  • Ren Z.F., Huang, Z.P., Xu J.W., Wang D.Z., Wen J.G., Wang, J.H., 1999. Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickel, Journal of Applied Physics Letters, 75 (8): 1086–1088
  • Pérez R., Estrada I,, Amézaga P., Miki M., Herrera J.M., Martínez R., 2010.Microstructural Characterization of Al- MWCNT Composites Produced by Mechanical Milling and Hot Extrusion, Journal of Alloya and Compound 495: 399–402.
  • Topcu I., Gulsoy H.Ö., Kadıoglu N., Gulluoglu A.N., 2009. Processing and Mechanical properties of B4C Reinforced Al Matrix Composites. Journal of Alloys and Compounds 482 (1-2): 516-521
  • Treacy MMJ., Ebbesen TW., Gibson JM.,1996. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Journal of Nature, 381:678–80
  • Turan E., 2003. Bor -Karbür Silisyum- Karbür Kompozitlerinin Sıcak Presleme ile Elde Edilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Maslak, İstanbul, Türkiye.
  • Yakobson B.I., Brabec C.J., Bernholc J.,1996. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Journal of Physical Review Letters 76 (14) : 2511–2514
  • Yoshida Y, Cisar L, Kamado S, Kojima Y., 2003, Effect of Microstructural Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy.Journal of Mater Transition 44:468.
  • Yoshida Y., Arai K., Itoh S., Kamado S., Kojima Y., 2005. Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Journal of Science Technology Advance Mater 6:185.