Değişik Boyalar Yüklenmiş p(AMPS) Hidrojellerinin Optik Özelliklerinin ve Elektriksel İletkenliklerinin İncelenmesi

Bu çalışmada, öncelikle poli(2-akrilamido-2-metilpropan sülfonik asit) (p(AMPS)) türü hidrojeller sentezlenmiş ve sonrasında giemsa stain (GS), methylene blue (MB) ve rhodamin 6G (R6G) boya maddeleri ile yüklenmiştir. Hidrojeller yapılarında suyu seven birçok fonksiyonel gruba sahip olabilmeleri nedeniyle özellikle tıp, biyomedikal, eczacılık, kozmetik, tarım, çevre gibi pek çok alanda uygulama imkânına sahiptir. GS, MB, R6G boya maddeleri gen, protein, DNA gibi maddelere bağlanabilmeleri sayesinde kimya, biyoloji ve tıpta pH ayarlama ve belirleme, hastalık teşhis ve tedavisi gibi uygulamalarda ve endüstride de boya gerektiren uygulamalarda sıklıkla kullanılmaktadırlar. Floresan özellik göstermeleri sayesinde çeşitli optik uygulamalarda da kullanım alanına sahiptirler. Sentezlenen ve boya yüklenen hidrojellerin optik özellikleri morötesi-görünür bölge (UV-Vis) soğurma spektrofotometre ve floresans spektrofotometre ile analiz edilmiştir. Bu analizler sonucunda, bu boyaların optik özelliklerinin boya yüklenen p(AMPS) hidrojellerde de gözlemlendiği belirlenmiştir. p(AMPS) hidrojellerin ve boya yüklenmiş hidrojellerin elektriksel özellikleri oda sıcaklığında iletkenlik ölçümleri ile incelenmiştir. Elektriksel ve optik özelliklerinin analizleri boya yüklenmiş p(AMPS) hidrojellerin tıbbi uygulamalarda, LED, güneş gözesi, optik filtre gibi optoelektronik uygulamalarda kullanılma potansiyeline sahip olduğunu göstermiştir.

Investigation of Optical Properties and Electrical Conductivities of Various Dyes Loaded p(AMPS) Hydrogels

In this study, poly(2-acrylamido-2-methyl-propanesulfonic acid) (p(AMPS)) type hydrogels were synthesized and afterwards giemsa stain (GS), methylene blue (MB) and rhodamin 6G (R6G) dyes were loaded to the hydrogels. Because of the reason that these hydrogels possess hydrophilic groups such as –OH, -NH2, -SO3H, -PO3H, -COOH in their structures; they have various applications in many fields such as medical, biomedical, pharmacy, cosmetic, agriculture, environment. GS, MB, R6G dyes, that could be bonded to gene, protein, DNA, often used in chemistry, biology and medical applications such as diagnosis and treatment, pH determination and in industrial applications that requires the use of dyes. As a result of their fluorescence properties, they could be used in various optical applications. The optical properties of the synthesized and dye loaded hydrogels were analyzed by ultraviolet-visible (UV-Vis) absorption spectrophotometer and fluorescence spectrophotometry. As a result of these analysis, it is determined that the optical properties of the dyes were also observed in the dye loaded p(AMPS) hydrogels. Additionally, the electrical properties of the p(AMPS) hydrogels and dye loaded hydrogels were investigated by room temperature conductivity measurements. The analysis of the electrical and optical properties showed that dye loaded p(AMPS) hydrogels have potential to be used in medical applications and optical applications such as LED, solar cells, optical filters.

___

  • Biswal D., Chirra H.D. Hilt J.Z., 2008. Fabrication of hydrogel microstructures using polymerization controlled by microcontact printing (PC mu CP), Biomed. Microdevices 10: 213-219.
  • Dawson R., Cooper A.I., Adams D.J., 2012. Nanoporous organic polymer networks, Prog. Polym. Sci. 37: 530-563.
  • Jenkins J.S., Flickinger M.C., Velev O.D., 2012. Deposition of composite coatings from particle-particle and particle-yeast blends by convective-sedimentation assembly,J. Colloid. Interf. Sci. 380: 192-200.
  • Lozinsky V.I., Galaev I.Y., Plieva F.M., Savina I.N., Jungvid H., Mattiasson B., 2003. Polymeric cryogels as promising materials of biotechnological interest, Trends. Biotechnol. 21: 445-451.
  • Nayak S., Lyon A.A., 2005. Soft nanotechnology with soft nanoparticles, Angew. Chem. Int. Ed. 44: 7686-7708.
  • Oh J.K., Seigwart D.J., Lee H.I., Sherwood G., Peteanu L., Hollinger J.O., Kataoka K., Matyjaszewski K., 2007. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation, J. Am. Chem. Soc. 129: 5939-5945.
  • Okay O., 2000. Macroporous copolymer networks, Prog. Polym. Sci. 25: 711-719.
  • Orakdogen N., Karacan P., Okay O., 2011. Macroporous, responsive DNA cryogel beads, React. Funct. Polym. 71: 782-790.
  • Pankove J.I., 1976. Optical Processes in Semiconductors, Prentice-Hall Inc.
  • Sahiner N., 2013a. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and theri use in catalysis, Prog. Polym. Sci. 38: 1329-1356.
  • Sahiner N., 2013b. Preparation of poly(ethylene imine) particles for versatile applications, Colloid. Surf. A., 433: 212-218.
  • Sahiner N., Ozay O., Aktas N., 2011. Aromatic organic contaminant removal from an aqueous environment by p(4-VP)-based materials, Chemosphere 85: 832-838.
  • Silan C., Akcali A., Otkun M.T., Ozbey N., Butun S., Ozay O., Sahiner N., 2012: Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties, Colloids Suf. B. 89: 248-253.
  • Tan Z.Q., Ohara S., Naito M., Abe H., 2011. Supramolecular hydrogel of bile stalts triggered by single-walledcarbon nanotubes, Adv. Mater. 23: 4053-4057.
  • Varvarenko S., Voronov A., Samarky V., Tarnavchyk I., Nosova N., Kohut A., Voronov S., 2010. Covalent grafting of polyacrylamide-based hydrogels to a polypropylene surface activated with functional polyperoxide, React. Funct. Polym. 70: 647-655.
  • Yoon J.A., Kowalevski T., Matyjaszewski K., 2011. Comparison of thermoresponsive deswelling kinetics of poly(oligo (ethyelene oxide) methacrylate)-based thermoresponsive hydrogels prepared by “Graft-from” ATRP, Macromolecules 44: 2261-2268.
  • Zhu J.M., 2010. Bioactive modification of poly(ethylene glycol) hydrogels fortissue engineering, Biomaterials 3: 4639-4656.